Résumé
En mathématiques, la symétrisation d'un monoïde est une opération de construction d'un groupe dans lequel se projette le monoïde initial, de manière naturelle. On parle parfois de groupe de Grothendieck du monoïde considéré. Ce procédé est notamment appliqué pour construire l'ensemble des entiers relatifs à partir de celui des entiers naturels. Si le monoïde de départ est muni d'une seconde loi de composition qui en fait un semi-anneau commutatif, son symétrisé est un anneau commutatif. La construction s’étend au cas non commutatif avec la notion de groupe universel enveloppant. Tout groupe abélien est en particulier un monoïde commutatif, de sorte qu'il existe un foncteur d'oubli de la catégorie des groupes abéliens dans la catégorie des monoïdes commutatifs. Ce foncteur admet un adjoint à gauche G, qui vérifie alors la propriété universelle suivante : pour tout groupe abélien K, de monoïde sous-jacent F(K), tout morphisme de monoïdes correspond à un morphisme de groupes . Cela garantit notamment l'unicité à isomorphisme près. Si A est un monoïde commutatif, le groupe G(A) est alors appelé symétrisé de A. Une manière de rendre explicite la définition ci-dessus est de considérer le monoïde produit , c'est-à-dire le produit cartésien muni des opérations coordonnée par coordonnée, modulo la relation d'équivalence On peut alors comprendre un élément (a, b) du monoïde produit comme correspondant à l'élément « a - b » du groupe. Ainsi, la classe d'équivalence de (a, a) est l'identité, et l'inverse de (a, b) est (b, a). Si le monoïde est abélien et muni d'une seconde loi qui en fait un semi-anneau commutatif, la multiplication sur le symétrisé est définie par la formule suivante : Il y a un homomorphisme injectif d'un monoïde commutatif dans son symétrisé si et seulement si le monoïde est simplifiable. S'il existe un homomorphisme injectif d'un monoïde commutatif et simplifiable dans un groupe , alors le sous-groupe de engendré par est isomorphe au symétrisé du monoïde ( ). On dit parfois que est le plus petit groupe contenant .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.