Le produit tensoriel de deux modules est une construction en théorie des modules qui, à deux modules sur un même anneau commutatif unifère A, assigne un module. Le produit tensoriel est très important dans les domaines de l'analyse fonctionnelle, de la topologie algébrique et de la géométrie algébrique. Le produit tensoriel permet en outre de ramener l'étude d'applications bilinéaires ou multilinéaires à des applications linéaires.
Lorsque M, N et F sont trois A-modules, on appelle application bilinéaire une application f : M × N → F, telle que :
f est linéaire à gauche, c'est-à-dire que .
f est linéaire à droite, c'est-à-dire que .
Pour ramener l'étude des applications bilinéaires à celle des applications linéaires, on se propose de définir un module M⊗N et une application bilinéaire tels que toute application bilinéaire se factorise de manière unique à droite par , c'est-à-dire qu'il existe une et une seule application linéaire telle que .
On va prouver qu'un tel couple existe et est unique à un isomorphisme près.
Soient M et N deux A-modules. L'espace C = A est le A-module des combinaisons linéaires formelles (à coefficients dans A) d'éléments de M × N. Un tel espace peut également être défini de manière équivalente comme le A-module des applications de M × N dans A nulles partout sauf sur un nombre fini d'éléments. C est un A-module libre dont est la base canonique, en ayant défini comme la combinaison linéaire formelle ayant pour seul coefficient non nul le coefficient devant , où ce coefficient est le neutre multiplicatif de A, autrement dit et
pour .
On souhaite que les éléments de la forme
soient identifiés comme nuls. On appelle donc D le sous-module de C engendré par les éléments de la forme précédente. On appelle produit tensoriel de M et N, et l'on note M⊗N le module quotient C/D. Il est important de préciser l'anneau des scalaires A dans la notation du produit tensoriel. Néanmoins, si la situation est assez claire, on peut se permettre de ne pas trop surcharger les notations. On note la classe de dans M⊗N.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
En mathématiques, la catégorie des modules sur un monoïde R est une construction qui rend compte abstraitement des propriétés observées dans l'étude des modules sur un anneau, en les généralisant. L'étude de catégories de modules apparaît naturellement en théorie des représentations et en géométrie algébrique. Puisqu'un R-module est un espace vectoriel lorsque R est un corps commutatif, on peut dans un tel cas identifier la catégorie des modules sur R à la sur le corps R.
En mathématiques, la symétrisation d'un monoïde est une opération de construction d'un groupe dans lequel se projette le monoïde initial, de manière naturelle. On parle parfois de groupe de Grothendieck du monoïde considéré. Ce procédé est notamment appliqué pour construire l'ensemble des entiers relatifs à partir de celui des entiers naturels. Si le monoïde de départ est muni d'une seconde loi de composition qui en fait un semi-anneau commutatif, son symétrisé est un anneau commutatif.
In abstract algebra, a bimodule is an abelian group that is both a left and a right module, such that the left and right multiplications are compatible. Besides appearing naturally in many parts of mathematics, bimodules play a clarifying role, in the sense that many of the relationships between left and right modules become simpler when they are expressed in terms of bimodules. If R and S are two rings, then an R-S-bimodule is an abelian group such that: M is a left R-module and a right S-module.
Couvre le concept de cohomologie de groupe, se concentrant sur les complexes de chaîne, les complexes de cochain, les produits de tasse et les anneaux de groupe.
Couvre le théorème algébrique de la Kunneth, expliquant les complexes de chaîne et les calculs de cohomologie.
Explore le produit croisé en cohomologie, couvrant ses propriétés et applications en homotopie.
Motion forecasting is crucial in enabling autonomous vehicles to anticipate the future trajectories of surrounding agents. To do so, it requires solving mapping, detection, tracking, and then forecasting problems, in a multi-step pipeline. In this complex ...
Isogeometric analysis is a powerful paradigm which exploits the high smoothness of splines for the numerical solution of high order partial differential equations. However, the tensor-product structure of standard multivariate B-spline models is not well s ...
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...