AdaBoost (ou adaptive boosting) est, en intelligence artificielle et en apprentissage automatique, un méta-algorithme de boosting introduit par Yoav Freund et Robert Schapire. Il peut être utilisé en association avec de nombreux autres types d'algorithmes d'apprentissage afin d'en améliorer les performances. Les sorties des autres algorithmes (appelés classifieurs faibles) sont combinées en une somme pondérée qui représente la sortie finale du classeur boosté. AdaBoost est adaptatif dans le sens où les classeurs faibles subséquents sont ajustés en faveur des échantillons mal classés par les classeurs précédents.
AdaBoost est notablement sensible aux données bruitées ou peu corrélées. Toutefois, dans certains problèmes, il peut s'avérer moins enclin au surapprentissage que d'autres algorithmes. Les sous-classeurs utilisés peuvent être faibles tant qu'ils proposent une performance au moins un peu supérieure à celle d'un classeur aléatoire, auquel cas il peut être prouvé que le modèle final converge vers un classeur fort.
Tous les algorithmes d'apprentissage tendent à correspondre plus à certains types de problèmes qu'à d'autres, et ont typiquement de nombreux paramètres et configurations différents qu'il est nécessaire d'ajuster pour atteindre une performance optimale sur un ensemble d'apprentissage fourni. AdaBoost (avec des arbres de décision comme classeurs faibles) est souvent désigné comme le meilleur classeur clé-en-main.
Adaboost repose sur la sélection itérative de classifieur faible en fonction d'une distribution des exemples d'apprentissage. Chaque exemple est pondéré en fonction de sa difficulté avec le classifieur courant. C'est un exemple de la méthode des poids multiplicatifs (multiplicative weights update method).
Soit un ensemble d'observations. Notons les : où sont les caractéristiques de l'individu et la variable à prédire.
On initialise le poids associé à ,
Pour :
Trouver la fonction qui minimise l'erreur de classification en fonction des poids . C'est-à-dire qui vérifie le programme de minimisation suivant :
est l'erreur du modèle.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
This course aims to provide graduate students a thorough grounding in the methods, theory, mathematics and algorithms needed to do research and applications in machine learning. The course covers topi
In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Gradient boosting is a machine learning technique used in regression and classification tasks, among others. It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple decision trees. When a decision tree is the weak learner, the resulting algorithm is called gradient-boosted trees; it usually outperforms random forest.
Le boosting est un domaine de l'apprentissage automatique (branche de l'intelligence artificielle). C'est un principe qui regroupe de nombreux algorithmes qui s'appuient sur des ensembles de classifieurs binaires : le boosting optimise leurs performances. Le principe est issu de la combinaison de classifieurs (appelés également hypothèses). Par itérations successives, la connaissance d'un classifieur faible - weak classifier - est ajoutée au classifieur final - strong classifier.
Explore l'analyse de la mémoire post mortem des personnalités publiques dans les nouvelles et les médias sociaux, en découvrant des idées importantes sur la formation de la mémoire.
Informative sample selection in an active learning (AL) setting helps a machine learning system attain optimum performance with minimum labeled samples, thus reducing annotation costs and boosting performance of computer-aided diagnosis systems in the pres ...
The remarkable ability of deep learning (DL) models to approximate high-dimensional functions from samples has sparked a revolution across numerous scientific and industrial domains that cannot be overemphasized. In sensitive applications, the good perform ...
EPFL2024
, , ,
Turning pass-through network architectures into iterative ones, which use their own output as input, is a well-known approach for boosting performance. In this paper, we argue that such architectures offer an additional benefit: The convergence rate of the ...