E8 latticeIn mathematics, the E_8 lattice is a special lattice in R^8. It can be characterized as the unique positive-definite, even, unimodular lattice of rank 8. The name derives from the fact that it is the root lattice of the E_8 root system. The norm of the E_8 lattice (divided by 2) is a positive definite even unimodular quadratic form in 8 variables, and conversely such a quadratic form can be used to construct a positive-definite, even, unimodular lattice of rank 8. The existence of such a form was first shown by H.
Réseau de LeechLe réseau de Leech est un réseau remarquable dans l'espace euclidien de dimension 24. Il est relié au code de Golay. Ernst Witt le découvre en 1940 mais ne publie pas cette découverte qui sera finalement attribuée à John Leech en 1965. Le réseau de Leech est caractérisé comme étant le seul pair en dimension 24 qui ne contient pas de racines, c'est-à-dire de vecteur v tel que (v,v)=2. Il a été construit par John Leech. Le groupe des automorphismes du réseau de Leech est le groupe de Conway Co0. Il y a exactement 24 .
E8 manifoldDISPLAYTITLE:E8 manifold In mathematics, the E8 manifold is the unique compact, simply connected topological 4-manifold with intersection form the E8 lattice. The manifold was discovered by Michael Freedman in 1982. Rokhlin's theorem shows that it has no smooth structure (as does Donaldson's theorem), and in fact, combined with the work of Andrew Casson on the Casson invariant, this shows that the manifold is not even triangulable as a simplicial complex.
4-manifoldIn mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic).