In mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic).
4-manifolds are important in physics because in General Relativity, spacetime is modeled as a pseudo-Riemannian 4-manifold.
The homotopy type of a simply connected compact 4-manifold only depends on the intersection form on the middle dimensional homology. A famous theorem of implies that the homeomorphism type of the manifold only depends on this intersection form, and on a invariant called the Kirby–Siebenmann invariant, and moreover that every combination of unimodular form and Kirby–Siebenmann invariant can arise, except that if the form is even, then the Kirby–Siebenmann invariant must be the signature/8 (mod 2).
Examples:
In the special case when the form is 0, this implies the 4-dimensional topological Poincaré conjecture.
If the form is the E8 lattice, this gives a manifold called the E8 manifold, a manifold not homeomorphic to any simplicial complex.
If the form is , there are two manifolds depending on the Kirby–Siebenmann invariant: one is 2-dimensional complex projective space, and the other is a fake projective space, with the same homotopy type but not homeomorphic (and with no smooth structure).
When the rank of the form is greater than about 28, the number of positive definite unimodular forms starts to increase extremely rapidly with the rank, so there are huge numbers of corresponding simply connected topological 4-manifolds (most of which seem to be of almost no interest).
Freedman's classification can be extended to some cases when the fundamental group is not too complicated; for example, when it is , there is a classification similar to the one above using Hermitian forms over the group ring of .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
We develop, analyze and implement numerical algorithms to solve optimization problems of the form: min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Rieman
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
The subject deals with differential geometry and its relation to global analysis, partial differential equations, geometric measure theory and variational principles to name a few.
En mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
In geometric topology and differential topology, an (n + 1)-dimensional cobordism W between n-dimensional manifolds M and N is an h-cobordism (the h stands for homotopy equivalence) if the inclusion maps are homotopy equivalences. The h-cobordism theorem gives sufficient conditions for an h-cobordism to be trivial, i.e., to be C-isomorphic to the cylinder M × [0, 1]. Here C refers to any of the categories of smooth, piecewise linear, or topological manifolds.
En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
, ,
In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for ot ...
The goal of this thesis is the development and the analysis of numerical methods for problems where the unknown is a curve on a smooth manifold. In particular, the thesis is structured around the three following problems: homotopy continuation, curve inter ...
We determine the bounded cohomology of the group of homeomorphisms of certain low-dimensional manifolds. In particular, for the group of orientation-preserving homeomorphisms of the circle and of the closed 2-disc, it is isomorphic to the polynomial ring g ...