Résumé
Dans l'analyse d'un système dynamique, l'exposant de Liapounov permet de quantifier la stabilité ou l'instabilité de ses mouvements. Un exposant de Liapounov peut être soit un nombre réel fini, soit ∞ ou –∞. Un mouvement instable a un exposant de Liapounov positif, un mouvement stable correspond à un exposant de Liapounov négatif. Les mouvements bornés d'un système linéaire ont un exposant de Liapounov négatif ou nul. L'exposant de Liapounov peut servir à étudier la stabilité (ou l'instabilité) des points d'équilibre des systèmes non linéaires. Lorsqu'on linéarise un tel système au voisinage d'un point d'équilibre, si le système non linéaire est non autonome, le système linéaire obtenu est à coefficients variables ; chacun de ses mouvements a son propre exposant de Liapounov. Si chacun d'eux est négatif et si le système linéaire est « régulier » (notion que nous détaillerons plus loin), alors le point d'équilibre est (localement) asymptotiquement stable pour le système non linéaire. Si l'un de ces exposants de Liapounov est positif et si le système linéaire est régulier, alors le point d'équilibre est instable pour le système non linéaire. Dans ce cas, le comportement du système est extrêmement « sensible aux conditions initiales », dans le sens où une incertitude sur celles-ci entraîne une incertitude sur le mouvement qui grandit de manière exponentielle au cours du temps. Ce phénomène est parfois assimilé, à tort (du moins en général), à un comportement chaotique ; il en est néanmoins une condition nécessaire. L'inverse du plus grand exposant de Liapounov est un temps caractéristique du système, appelé parfois horizon de Liapounov. Le caractère prédictible de l'évolution du système ne subsiste que pour les durées très inférieures à cet horizon, pendant lesquelles l'erreur sur le point courant de la trajectoire garde une taille comparable à l'erreur sur les conditions initiales. En revanche, pour les temps supérieurs, toute prédiction devient pratiquement impossible, même si le théorème de Cauchy-Lipschitz, qui suppose la connaissance parfaite des conditions initiales, reste valide.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.