Deep-level transient spectroscopy (DLTS) is an experimental tool for studying electrically active defects (known as charge carrier traps) in semiconductors. DLTS establishes fundamental defect parameters and measures their concentration in the material. Some of the parameters are considered as defect "finger prints" used for their identifications and analysis. DLTS investigates defects present in a space charge (depletion) region of a simple electronic device. The most commonly used are Schottky diodes or p-n junctions. In the measurement process the steady-state diode reverse polarization voltage is disturbed by a voltage pulse. This voltage pulse reduces the electric field in the space charge region and allows free carriers from the semiconductor bulk to penetrate this region and recharge the defects causing their non-equilibrium charge state. After the pulse, when the voltage returns to its steady-state value, the defects start to emit trapped carriers due to the thermal emission process. The technique observes the device space charge region capacitance where the defect charge state recovery causes the capacitance transient. The voltage pulse followed by the defect charge state recovery are cycled allowing an application of different signal processing methods for defect recharging process analysis. The DLTS technique has a higher sensitivity than almost any other semiconductor diagnostic technique. For example, in silicon it can detect impurities and defects at a concentration of one part in 1012 of the material host atoms. This feature together with a technical simplicity of its design made it very popular in research labs and semiconductor material production factories. The DLTS technique was pioneered by David Vern Lang at Bell Laboratories in 1974. A US Patent was awarded to Lang in 1975. In conventional DLTS the capacitance transients are investigated by using a lock-in amplifier or double box-car averaging technique when the sample temperature is slowly varied (usually in a range from liquid nitrogen temperature to room temperature 300 K or above).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MICRO-566: Large-area electronics: devices and materials
Introduction to the physical concepts involved in the description of optical and electronic transport properties of thin-film semiconductor materials found in many large-area applications (solar cells
Séances de cours associées (14)
Photodiodes: Caractéristiques et modèle de circuit
Explore les caractéristiques et le modèle de circuit des photodiodes.
Supports de charge dans l'électronique organique: Solitons et Polarons
Discute des porteurs de charge dans les matériaux organiques, en se concentrant sur les solitons, les polarons et leurs implications pour le transport de charge et les performances des appareils.
Transport et recombinaison
Explore le transport, la génération et la recombinaison dans les semi-conducteurs, couvrant les conductivités de dérive et de diffusion, les mécanismes de piégeage, divers canaux de recombinaison, et le rôle des pièges et des centres de recombinaison.
Afficher plus
Publications associées (60)

Radiation-Induced Charge Trapping in Shallow Trench Isolations of FinFETs

Federico Faccio

We provide comprehensive experimental data and technology computer-aided design (TCAD) simulations to clarify total-ionizing-dose mechanisms in 16-nm Si FinFETs. In n-channel FinFETs irradiated to ultrahigh doses, the transconductance evolution rebounds (i ...
Ieee-Inst Electrical Electronics Engineers Inc2024

Electrical spectroscopy of defect states and their hybridization in monolayer MoS2

Andras Kis, Oleg Yazyev, Mukesh Kumar Tripathi, Kristians Cernevics, Zhenyu Wang, Ahmet Avsar, Yanfei Zhao, Juan Francisco Gonzalez Marin, Cheol Yeon Cheon, Hyungoo Ji

Defects in solids are unavoidable and can create complex electronic states that can significantly influence the electrical and optical properties of semiconductors. With the rapid progress in the integration of 2D semiconductors in practical devices, it is ...
2023

Tailoring Organic/Inorganic Interface Trap States of Metal Oxide/Polyimide toward Improved Vacuum Surface Insulation

Guang-Yu Sun, Chao Wang, Haoxiang Zhao

High-voltage and high-power devices are indispensablein spacecraftfor outer space explorations, whose operations require aerospace materialswith adequate vacuum surface insulation performance. Despite persistentattempts to fabricate such materials, current ...
AMER CHEMICAL SOC2023
Afficher plus
Concepts associés (1)
Carrier generation and recombination
In the solid-state physics of semiconductors, carrier generation and carrier recombination are processes by which mobile charge carriers (electrons and electron holes) are created and eliminated. Carrier generation and recombination processes are fundamental to the operation of many optoelectronic semiconductor devices, such as photodiodes, light-emitting diodes and laser diodes. They are also critical to a full analysis of p-n junction devices such as bipolar junction transistors and p-n junction diodes.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.