vignette|Un exemple de détection de personnes sur une voie de circulation
La détection de personnes est un domaine de la vision par ordinateur consistant à détecter un humain dans une . C'est un cas particulier de détection d'objet, où l'on cherche à détecter la présence et la localisation précise, dans une image, d'une ou plusieurs personnes, en général dans une posture proche de celle de la station debout ou de la marche. On parle également de détection de piéton, en raison de l'importance des applications en vidéosurveillance et pour les systèmes de vision embarqués dans des véhicules.
Étudiée à partir de la fin des années 1990, la détection de personnes s'est révélée être un sujet assez difficile, en raison de la grande variété d'apparences des personnes, de l'articulation du corps humain et des phénomènes d'occultations. Bénéficiant des progrès méthodologiques réalisés en détection de visage, la détection de personnes a inspiré des méthodes spécifiques, comme les histogrammes de gradient orienté, particulièrement performants. Les méthodes les plus efficaces construisent des modèles statistiques par apprentissage supervisé, à partir de caractéristiques de forme ou d'apparence, calculées sur de nombreux exemples d'images de personnes.
vignette|Détection de piétons dans diverses situations sur la voirie.
La détection de personnes est un sujet particulièrement difficile, en raison notamment de la grande variabilité d'apparences et de situations possibles :
grande variabilité de l'apparence des êtres humains, ainsi que de leurs vêtements ;
articulation du corps humain (bras, jambes, torse) ;
occultations par des objets (mobilier urbain par exemple) ;
occultations par d'autres personnes et phénomènes de foule.
Généralement, la détection doit s'effectuer dans des conditions difficiles et en environnement non contraint, en utilisant du matériel de prise de vue fournissant des images de faible qualité : caméras de vidéosurveillance de faible résolution, caméras embarquées dans un véhicule, etc.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course will cover different aspects of multimodal processing (complementarity vs redundancy; alignment and synchrony; fusion), with an emphasis on the analysis of people, behaviors and interaction
Explore les techniques de délimitation, y compris la transformation de Hough, l'orientation du gradient et la détection de forme, en soulignant l'importance de combiner des techniques basées sur des graphiques et l'apprentissage automatique.
Explore les techniques de segmentation, y compris les modèles CNN et U-Net, pour la reconnaissance et l'analyse d'images, en mettant l'accent sur les méthodes automatisées qui permettent de gagner du temps.
Introduit des réseaux neuronaux convolutifs, couvrant les couches entièrement connectées, les convolutions, la mise en commun, les traductions PyTorch et des applications telles que l'estimation de pose à la main et l'estimation de tubalité.
We address the problem of segmenting anomalies and unusual obstacles in road scenes for the purpose of self-driving safety.The objects in question are not present in the common training sets as it is not feasible to collect and annotate examples for every ...
Object detection plays a critical role in various computer vision applications, encompassingdomains like autonomous vehicles, object tracking, and scene understanding. These applica-tions rely on detectors that generate bounding boxes around known object c ...
The field of artificial intelligence is set to fuel the future of mobility by driving forward the transition from advanced driver-assist systems to fully autonomous vehicles (AV). Yet the current technology, backed by cutting-edge deep learning techniques, ...