Résumé
Stochastic control or stochastic optimal control is a sub field of control theory that deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system. The system designer assumes, in a Bayesian probability-driven fashion, that random noise with known probability distribution affects the evolution and observation of the state variables. Stochastic control aims to design the time path of the controlled variables that performs the desired control task with minimum cost, somehow defined, despite the presence of this noise. The context may be either discrete time or continuous time. An extremely well-studied formulation in stochastic control is that of linear quadratic Gaussian control. Here the model is linear, the objective function is the expected value of a quadratic form, and the disturbances are purely additive. A basic result for discrete-time centralized systems with only additive uncertainty is the certainty equivalence property: that the optimal control solution in this case is the same as would be obtained in the absence of the additive disturbances. This property is applicable to all centralized systems with linear equations of evolution, quadratic cost function, and noise entering the model only additively; the quadratic assumption allows for the optimal control laws, which follow the certainty-equivalence property, to be linear functions of the observations of the controllers. Any deviation from the above assumptions—a nonlinear state equation, a non-quadratic objective function, noise in the multiplicative parameters of the model, or decentralization of control—causes the certainty equivalence property not to hold. For example, its failure to hold for decentralized control was demonstrated in Witsenhausen's counterexample. In a discrete-time context, the decision-maker observes the state variable, possibly with observational noise, in each time period.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

MOOCs associés

Chargement