Cylindre d'applicationEn mathématiques, le cylindre (mapping cylinder) d'une application continue entre deux espaces topologiques est un espace homotopiquement équivalent à l'espace but et dans lequel l'espace source s'inclut par une cofibration. Si l'espace source est aussi l'espace but, le tore de l'application (mapping torus) est le quotient du cylindre par la relation entre ses extrémités. Le double cylindre d'applications de deux applications continues f : X → Y et f : X → Y est le quotient de la réunion disjointe par la relation d'équivalence : (x, i) ∼ f(x).
CofibrationEn mathématiques, une cofibration est une application qui satisfait la propriété d'extension des homotopies, ce qui est le cas pour les inclusions de CW-complexes. Le quotient de l'espace but par l'espace source est alors appelé cofibre de l'application. L'inclusion dans le cylindre d'application permet de remplacer une application continue entre deux espaces topologiques par une cofibration homotopiquement équivalente. La cofibre est alors appelée cofibre homotopique de l'application initiale.
Homotopy fiberIn mathematics, especially homotopy theory, the homotopy fiber (sometimes called the mapping fiber) is part of a construction that associates a fibration to an arbitrary continuous function of topological spaces . It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groupsMoreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished trianglegives a long exact sequence analogous to the long exact sequence of homotopy groups.
Homotopy colimit and limitIn mathematics, especially in algebraic topology, the homotopy limit and colimitpg 52 are variants of the notions of and colimit extended to the homotopy category . The main idea is this: if we have a diagramconsidered as an object in the , (where the homotopy equivalence of diagrams is considered pointwise), then the homotopy limit and colimits then correspond to the and coconewhich are objects in the homotopy category , where is the category with one object and one morphism.
Suite de PuppeLa suite de Puppe — nommée d'après Dieter Puppe — est une construction mathématique en topologie algébrique, plus précisément en théorie de l'homotopie. Soient f : A → B une application continue entre deux CW-complexes et C(f) son cône. On a donc une suite : A → B → C(f). En appliquant à f le foncteur de suspension et en effectuant pour Sf : SA → SB la même construction, on obtient une autre suite : SA → SB → C(Sf).
FibrationEn théorie de l'homotopie, une fibration est une application continue entre espaces topologiques satisfaisant une propriété de relèvement des homotopies, qui est satisfaite en général par les projections fibrées. Les fibrations de Serre relèvent les homotopies depuis les CW-complexes tandis que les fibrations de Hurewicz relèvent les homotopies depuis n'importe quel espace topologique.