In mathematics, in particular homotopy theory, a continuous mapping between topological spaces
is a cofibration if it has the homotopy extension property with respect to all topological spaces . That is, is a cofibration if for each topological space , and for any continuous maps and with , for any homotopy from to , there is a continuous map and a homotopy from to such that for all and . (Here, denotes the unit interval .)
This definition is formally dual to that of a fibration, which is required to satisfy the homotopy lifting property with respect to all spaces; this is one instance of the broader Eckmann–Hilton duality in topology.
Cofibrations are a fundamental concept of homotopy theory. Quillen has proposed the notion of as a formal framework for doing homotopy theory in more general categories; a model category is endowed with three distinguished classes of morphisms called fibrations, cofibrations and weak equivalences satisfying certain lifting and factorization axioms.
In what follows, let denote the unit interval.
A map of topological spaces is called a cofibrationpg 51 if for any map such that there is an extension to , meaning there is a map such that , we can extend a homotopy of maps to a homotopy of maps , whereWe can encode this condition in the following commutative diagramwhere is the path space of equipped with the compact-open topology.
For the notion of a cofibration in a model category, see .
Topologists have long studied notions of "good subspace embedding", many of which imply that the map is a cofibration, or the converse, or have similar formal properties with regards to homology. In 1937, Borsuk proved that if is a binormal space ( is normal, and its product with the unit interval is normal) then every closed subspace of has the homotopy extension property with respect to any absolute neighborhood retract. Likewise, if is a closed subspace of and the subspace inclusion is an absolute neighborhood retract, then the inclusion of into is a cofibration.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
We propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspen
On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
En mathématiques et plus précisément en théorie de l'homotopie, le cône d'une application est un espace topologique construit à partir du cône ayant pour base l'espace de départ de l'application, en identifiant les points de cette base avec ceux de l'espace d'arrivée au moyen de l'application. Soit X et Y deux espaces topologiques et f : X → Y une application continue. Le cône de l'application f ou cofibre homotopique de f, noté C, est l'espace topologique , c'est-à-dire en quotientant la réunion disjointe CX⊔Y par l'identification de chaque élément x de X ⊂ CX avec son image f(x) dans Y.
En mathématiques, en particulier en théorie de l'homotopie en topologie algébrique, la propriété de relèvement des homotopies est une condition technique sur une fonction continue d'un espace topologique E dit total à un autre, B dit espace de base. Moralement, cette propriété énonce que toute homotopie dans l'espace de base se relève en une homotopie dans l'espace total E. Par exemple, un revêtement a une propriété de relèvement local unique des chemins vers un ouvert de la fibre donnée ; l'unicité est due au fait que les fibres d'un revêtement sont des espaces discrets.
In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a . A model category is a with classes of morphisms called weak equivalences, fibrations, and cofibrations, satisfying several axioms. The associated of a model category has the same objects, but the morphisms are changed in order to make the weak equivalences into isomorphisms.
To do homological algebra with unbounded chain complexes one needs to first find a way of constructing resolutions. Spal-tenstein solved this problem for chain complexes of R-modules by truncating further and further to the left, resolving the pieces, and ...
Collapsing cell complexes was first introduced in the 1930's as a way to deform a space into a topological-equivalent subspace with a sequence of elementary moves. Recently, discrete Morse theory techniques provided an efficient way to construct deformatio ...
The field of computational topology has developed many powerful tools to describe the shape of data, offering an alternative point of view from classical statistics. This results in a variety of complex structures that are not always directly amenable for ...