En chimie organique, une réaction de couplage est une transformation qui permet l'association de deux radicaux hydrocarbures, en général à l'aide d'un catalyseur métallique. Deux classifications sont possibles en fonction de la nature du produit formé ou de celle des réactifs mis en jeu : dans le premier cas, si le produit est symétrique (formé par l'association de deux molécules identiques), on parle d'homocouplage. Il s'agit en général de la réaction d'un halogénure aromatique avec une deuxième molécule identique ou de celle d'un organométallique de la même manière. Si le produit n'est pas symétrique, on parle de couplage croisé, qui fait en général intervenir un composé organométallique et un halogénure (ou pseudo-halogénure) ; la seconde classification, d'origine mécanistique, s'applique principalement (mais pas seulement) aux homocouplages qui peuvent être soit oxydants, si les carbones associés voient leur nombre d'oxydation augmenter au cours de la réaction, soit réducteurs dans le cas où les nombres d'oxydation diminuent. Pour des raisons de contrôle des produits formés, il est difficile d'étendre ce mode de réaction aux couplages croisés, mais des études se fondant sur une cinétique bien maîtrisée des réactions concurrentes ont été mises au point récemment. La réaction d'Ullmann est d'un exemple d'homocouplage : il s'agit de la réaction catalysée par du cuivre métallique de deux molécules d'un halogénure d'aryle afin de former un biaryle. La réaction d'Ullmann nécessite parfois de très hautes températures, et peut être parfois remplacée en chimie de synthèse par des réactions catalysée par du palladium. De nombreuses réactions de couplage concernent les phénols. Le BINOL est le produit de réaction C-C du napht-2-ol avec du chlorure de cuivre (II) et le 2,6-Xylénol dimérise avec le diacétate d'iodosobenzène. Un des métaux les plus communs pour ce type de réactions est le palladium, parfois ajouté sous la forme du tétrakis(triphénylphosphine) palladium (0).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
CH-707: Frontiers in Chemical Synthesis. Towards Sustainable Chemistry
This training will empowered the student with all the tools of modern chemistry, which will be highly useful for his potential career as a process or medicinal chemist in industry.
CH-432: Structure and reactivity
To develop a detailed knowledge of the key steps of advanced modern organic synthesis going beyond classical chemistry of olefins and carbonyls.
CH-422: Catalyst design for synthesis
This course on homogeneous catalysis provide a detailed understanding of how these catalysts work at a mechanistic level and give examples of catalyst design for important reactions (hydrogenation, ol
Afficher plus
Publications associées (322)
Concepts associés (12)
Couplage croisé
En chimie organique, un couplage croisé est une réaction de couplage entre deux fragments moléculaires par formation d'une liaison carbone-carbone sous l'effet d'un catalyseur organométallique. Par exemple, un composé , où R est un fragment organique et M un métal du groupe principal, réagit avec un halogénure organique , où X est un halogène, pour former un produit . Les chimistes Richard Heck, Ei-ichi Negishi et Akira Suzuki ont reçu le prix Nobel de chimie 2010 pour avoir développé des réactions de couplage catalysées au palladium.
Couplage de Hiyama
Le couplage de Hiyama est une réaction de couplage entre un organosilane et un halogénure organique ou un triflate, catalysée par du palladium parfois assisté par du nickel. Ce couplage a été décrit pour la première fois par Yasuo Hatanaka et Tamejiro Hiyama en 1988. Dans la publication initiale de 1988, le 1-iodonaphtalène réagit avec le triméthylvinylsilane pour produire le 1-vinylnaphtalène avec une catalyse au chlorure d'allylpalladium. Cette réaction dispose de plusieurs avantages.
Réaction de Heck
La réaction de Heck est la réaction chimique entre un dérivé halogéné insaturé ou un triflate insaturé avec un alcène en présence d'une base et d'un catalyseur au palladium pour former un alcène substitué. Cette réaction a été introduite par le chimiste américain Richard Heck qui a reçu en 2010 le prix Nobel de chimie pour cette réaction. La réaction est réalisée en présence d'un catalyseur au palladium. Le catalyseur peut être le tetrakis(triphenylphosphine)palladium(0) ou l'acétate de palladium(II).
Afficher plus
MOOCs associés (1)
Cavity Quantum Optomechanics
Fundamentals of optomechanics. Basic principles, recent developments and applications.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.