Minimal prime idealIn mathematics, especially in commutative algebra, certain prime ideals called minimal prime ideals play an important role in understanding rings and modules. The notion of height and Krull's principal ideal theorem use minimal primes. A prime ideal P is said to be a minimal prime ideal over an ideal I if it is minimal among all prime ideals containing I. (Note: if I is a prime ideal, then I is the only minimal prime over it.) A prime ideal is said to be a minimal prime ideal if it is a minimal prime ideal over the zero ideal.
Primary idealIn mathematics, specifically commutative algebra, a proper ideal Q of a commutative ring A is said to be primary if whenever xy is an element of Q then x or yn is also an element of Q, for some n > 0. For example, in the ring of integers Z, (pn) is a primary ideal if p is a prime number. The notion of primary ideals is important in commutative ring theory because every ideal of a Noetherian ring has a primary decomposition, that is, can be written as an intersection of finitely many primary ideals.
Décomposition primaireLa décomposition primaire est une généralisation de la décomposition d'un nombre entier en facteurs premiers. Cette dernière décomposition, connue depuis Gauss (1832) sous le nom de théorème fondamental de l'arithmétiqueGauss 1832., s'étend naturellement au cas d'un élément d'un anneau principal. Une décomposition plus générale est celle d'un idéal d'un anneau de Dedekind en produit d'idéaux premiers; elle a été obtenue en 1847 par Kummer (dans le formalisme encore peu maniable des « nombres idéaux ») à l'occasion de ses recherches sur le dernier théorème de FermatKummer 1847.
Radical d'un idéalEn algèbre commutative, le radical (aussi appelé la racine) d'un idéal I dans un anneau commutatif A est l'ensemble des éléments de A dont une puissance appartient à I. Si A est un anneau principal, I est de la forme aA et son radical est l'idéal engendré par le produit des diviseurs irréductibles de a (chaque irréductible — à produit près par un inversible — n'apparaissant qu'une fois dans ce produit). En particulier dans Z, le radical d'un idéal nZ est l'idéal engendré par le radical de l'entier n.
Algèbre commutativevignette|Propriété universelle du produit tensoriel de deux anneaux commutatifs En algèbre générale, l’algèbre commutative est la branche des mathématiques qui étudie les anneaux commutatifs, leurs idéaux, les modules et les algèbres. Elle est fondamentale pour la géométrie algébrique et pour la théorie algébrique des nombres. David Hilbert est considéré comme le véritable fondateur de cette discipline appelée initialement la « théorie des idéaux ».