Résumé
In mathematics, specifically commutative algebra, a proper ideal Q of a commutative ring A is said to be primary if whenever xy is an element of Q then x or yn is also an element of Q, for some n > 0. For example, in the ring of integers Z, (pn) is a primary ideal if p is a prime number. The notion of primary ideals is important in commutative ring theory because every ideal of a Noetherian ring has a primary decomposition, that is, can be written as an intersection of finitely many primary ideals. This result is known as the Lasker–Noether theorem. Consequently, an irreducible ideal of a Noetherian ring is primary. Various methods of generalizing primary ideals to noncommutative rings exist, but the topic is most often studied for commutative rings. Therefore, the rings in this article are assumed to be commutative rings with identity. The definition can be rephrased in a more symmetric manner: an ideal is primary if, whenever , we have or or . (Here denotes the radical of .) An ideal Q of R is primary if and only if every zero divisor in R/Q is nilpotent. (Compare this to the case of prime ideals, where P is prime if and only if every zero divisor in R/P is actually zero.) Any prime ideal is primary, and moreover an ideal is prime if and only if it is primary and semiprime (also called radical ideal in the commutative case). Every primary ideal is primal. If Q is a primary ideal, then the radical of Q is necessarily a prime ideal P, and this ideal is called the associated prime ideal of Q. In this situation, Q is said to be P-primary. On the other hand, an ideal whose radical is prime is not necessarily primary: for example, if , , and , then is prime and , but we have , , and for all n > 0, so is not primary. The primary decomposition of is ; here is -primary and is -primary. An ideal whose radical is maximal, however, is primary. Every ideal Q with radical P is contained in a smallest P-primary ideal: all elements a such that ax ∈ Q for some x ∉ P. The smallest P-primary ideal containing Pn is called the nth symbolic power of P.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
MATH-311: Algebra IV - rings and modules
Ring and module theory with a major emphasis on commutative algebra and a minor emphasis on homological algebra.
MATH-510: Algebraic geometry II - schemes and sheaves
The aim of this course is to learn the basics of the modern scheme theoretic language of algebraic geometry.
Séances de cours associées (12)
Décomposition géométrique primaire
Couvre les idéaux radicaux, Nullstellensatz, les idéaux primaires et les ensembles algébriques.
Décomposition primaire : idéal noéthérien
Couvre la décomposition primaire dans les idéaux noéthériens et les idéaux primaires uniques.
Décomposition primaire dans les anneaux
Explore la décomposition primaire en anneaux, en se concentrant sur les idéaux primaires et leurs propriétés.
Afficher plus
Publications associées (3)
Concepts associés (16)
Décomposition primaire
La décomposition primaire est une généralisation de la décomposition d'un nombre entier en facteurs premiers. Cette dernière décomposition, connue depuis Gauss (1832) sous le nom de théorème fondamental de l'arithmétiqueGauss 1832., s'étend naturellement au cas d'un élément d'un anneau principal. Une décomposition plus générale est celle d'un idéal d'un anneau de Dedekind en produit d'idéaux premiers; elle a été obtenue en 1847 par Kummer (dans le formalisme encore peu maniable des « nombres idéaux ») à l'occasion de ses recherches sur le dernier théorème de FermatKummer 1847.
Associated prime
In abstract algebra, an associated prime of a module M over a ring R is a type of prime ideal of R that arises as an annihilator of a (prime) submodule of M. The set of associated primes is usually denoted by and sometimes called the assassin or assassinator of M (word play between the notation and the fact that an associated prime is an annihilator). In commutative algebra, associated primes are linked to the Lasker–Noether primary decomposition of ideals in commutative Noetherian rings.
Radical d'un idéal
En algèbre commutative, le radical (aussi appelé la racine) d'un idéal I dans un anneau commutatif A est l'ensemble des éléments de A dont une puissance appartient à I. Si A est un anneau principal, I est de la forme aA et son radical est l'idéal engendré par le produit des diviseurs irréductibles de a (chaque irréductible — à produit près par un inversible — n'apparaissant qu'une fois dans ce produit). En particulier dans Z, le radical d'un idéal nZ est l'idéal engendré par le radical de l'entier n.
Afficher plus