Résumé
La décomposition primaire est une généralisation de la décomposition d'un nombre entier en facteurs premiers. Cette dernière décomposition, connue depuis Gauss (1832) sous le nom de théorème fondamental de l'arithmétiqueGauss 1832., s'étend naturellement au cas d'un élément d'un anneau principal. Une décomposition plus générale est celle d'un idéal d'un anneau de Dedekind en produit d'idéaux premiers; elle a été obtenue en 1847 par Kummer (dans le formalisme encore peu maniable des « nombres idéaux ») à l'occasion de ses recherches sur le dernier théorème de FermatKummer 1847., puis formalisée de manière quasi définitive vers 1871 par Dedekind, à qui l'on doit la notion d'idéalBourbaki 2006a, « Algèbre commutative. Théorie des nombres algébriques ».Dedekind 1876.. La décomposition primaire, qui fait l'objet du présent article, est plus générale encore ; elle est due à Lasker qui, dans un article touffu paru en 1905Lasker 1905., a considéré la décomposition d'idéaux d'« anneaux affines » (c'est-à-dire d'algèbres de type fini sur un corps commutatif) et d'idéaux d'anneaux de séries convergentes, et à Emmy Noether qui, dans un article remarquable daté de 1921, a placé cette décomposition primaire dans son cadre définitif, celui des anneaux que nous appelons aujourd'hui noethériensNoether 1921.. La théorie d'E. Noether portait sur la décomposition primaire d'un idéal dans un anneau noethérien; ce cadre a été élargi dans les Éléments de mathématique de Bourbaki où pour la première fois a été considérée la décomposition primaire d'un module de type fini sur un anneau noethérienBourbaki 2006b (première édition: 1961).. Il existe une théorie de la décomposition primaire dans les anneaux non commutatifs appelés firs (free ideal rings)Cohn 2006, §3.5., et en particulier dans les anneaux principaux non commutatifs. Néanmoins, il n'existe pas de décomposition primaire dans un anneau noethérien non commutatif quelconque, comme l'a montré Krull en 1928Pour plus de détails, voir L. Lesieur et R. Croisot 1963..
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.