Passer au contenu principal
Graph
Search
fr
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Concept
Neural network
Applied sciences
Information engineering
Apprentissage automatique
Réseau de neurones artificiels
Graph Chatbot
Séances de cours associées (32)
Connectez-vous pour filtrer par séance de cours
Connectez-vous pour filtrer par séance de cours
Réinitialiser
Précédent
Page 1 sur 4
Suivant
Réseaux neuronaux multicouches
Couvre les bases des réseaux neuronaux multicouches et le processus d'entraînement des réseaux entièrement connectés avec des couches cachées.
Réseaux neuronaux : Réseau neuronal à deux couches
Couvre les bases des réseaux neuraux, en mettant l'accent sur le développement des réseaux neuraux de deux couches vers les réseaux neuraux profonds.
Réseaux neuronaux
Explore les réseaux neuronaux, les couches cachées, les ajustements de poids, les fonctions d'activation et le théorème d'approximation universel.
Réseaux neuronaux: réseaux à deux couches et rétropropagation
Explore les réseaux neuronaux à deux couches et la rétropropagation pour l'apprentissage des espaces de fonctionnalités et l'approximation des fonctions continues.
Réseaux neuronaux : formation et optimisation
Explore la formation et l'optimisation des réseaux neuronaux, en abordant des défis tels que les fonctions de perte non convexes et les minima locaux.
Réseaux neuronaux : formation et activation
Explore les réseaux neuronaux, les fonctions d'activation, la rétropropagation et l'implémentation de PyTorch.
Réseaux de neurones: caractéristiques aléatoires et régression du noyau
Explore les caractéristiques aléatoires dans les réseaux neuronaux et la régression du noyau en utilisant la descente de gradient stochastique.
Méthodes de noyau: Réseaux neuronaux
Couvre les fondamentaux des réseaux neuronaux, en mettant l'accent sur les noyaux RBF et SVM.
Le paysage d'optimisation de Convex caché des réseaux neuronaux profonds
Explore le paysage d'optimisation convexe caché des réseaux neuronaux profonds, montrant la transition des modèles non convexes aux modèles convexes.
Réseaux neuronaux : régression et classification
Explore les réseaux neuronaux pour les tâches de régression et de classification, couvrant la formation, la régularisation et des exemples pratiques.