Ribet's theoremRibet's theorem (earlier called the epsilon conjecture or ε-conjecture) is part of number theory. It concerns properties of Galois representations associated with modular forms. It was proposed by Jean-Pierre Serre and proven by Ken Ribet. The proof was a significant step towards the proof of Fermat's Last Theorem (FLT). As shown by Serre and Ribet, the Taniyama–Shimura conjecture (whose status was unresolved at the time) and the epsilon conjecture together imply that FLT is true.
Andrew Wilesvignette|Andrew Wiles devant la statue de Pierre de Fermat à Beaumont-de-Lomagne (1995). Andrew John Wiles (né le à Cambridge, Angleterre) est un mathématicien britannique, professeur à l'université d'Oxford, en Angleterre. Il est célèbre pour avoir démontré le grand théorème de Fermat (1994). Il est lauréat du prix Abel 2016. Après avoir obtenu son diplôme de bachelor au Merton College de l'université d'Oxford, il entre au Clare College en 1974 pour y préparer un Ph.D.
Forme paraboliqueEn mathématiques, une forme parabolique (parfois appelée forme cuspidale, selon l'anglais cusp form) est une forme modulaire vérifiant des conditions d'annulation aux pointes. La parabole est une des trois coniques (avec l'hyperbole, et l'ellipse dont le cercle peut être considéré comme un cas particulier) découvertes par les mathématiciens grecs en tant qu'intersection d'un cône par un plan (du grec kônos). vignette|302x302px|Équation réduite y2 = 2px, paramètre de la parabole Nom de la fonction associée : trinôme du second degré.
Représentation galoisienneLa théorie des représentations galoisiennes est l'application naturelle de la théorie des représentations à la théorie algébrique des nombres. Un module galoisien est un module sur lequel agit un groupe de Galois G. Ces modules seront par exemple des groupes d'unités, des groupes des classes, ou des groupes de Galois eux-mêmes. En théorie algébrique des nombres classique, soit L une extension galoisienne d'un corps de nombres K, et soit G le groupe de Galois correspondant.
Forme automorphedroite|vignette|500x500px|La fonction êta de Dedekind est une forme automorphe dans le plan complexe. Une forme automorphique, en analyse harmonique et théorie des nombres, est une fonction d'un groupe topologique G à valeurs dans le corps des nombres complexes (ou un espace vectoriel complexe) qui est invariante sous l'action d'un sous-groupe discret du groupe topologique et qui vérifie certaines conditions de dérivabilité et de croissance à l'infini.
Variété abélienneEn mathématiques, et en particulier, en géométrie algébrique et géométrie complexe, une variété abélienne A est une variété algébrique projective qui est un groupe algébrique. La condition de est l'équivalent de la compacité pour les variétés différentielles ou analytiques, et donne une certaine rigidité à la structure. C'est un objet central en géométrie arithmétique. Une variété abélienne sur un corps k est un groupe algébrique A sur k, dont la variété algébrique sous-jacente est projective, connexe et géométriquement réduite.