Concept

Exact trigonometric values

In mathematics, the values of the trigonometric functions can be expressed approximately, as in , or exactly, as in . While trigonometric tables contain many approximate values, the exact values for certain angles can be expressed by a combination of arithmetic operations and square roots. The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 90°. For angles outside of this range, trigonometric values can be found by applying the reflection and shift identities. In the table below, stands for the ratio 1:0. These values can also be considered to be undefined (see division by zero). {| class="wikitable" style="text-align: center;"

!Radians!!Degrees!!sin!!cos!!tan!!cot!!sec!!csc
!!!
-
! !!
-
! !!
-
!
-
! !!
-
! !!
-
! !!
-
! !!
-
! !!
-
!
-
! !!
-
! !!
-
! !!
}
Some exact trigonometric values, such as , can be expressed in terms of a combination of arithmetic operations and square roots. Such numbers are called constructible, because one length can be constructed by compass and straightedge from another if and only if the ratio between the two lengths is such a number. However, some trigonometric values, such as , have been proven to not be constructible.
The sine and cosine of an angle are constructible if and only if the angle is constructible. If an angle is a rational multiple of pi radians, whether or not it is constructible can be determined as follows. Let the angle be radians, where a and b are relatively prime integers. Then it is constructible if and only if the prime factorization of the denominator, b, consists of any number of Fermat primes, each with an exponent of 1, times any power of two.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
MATH-124: Geometry for architects I
Ce cours entend exposer les fondements de la géométrie à un triple titre : 1/ de technique mathématique essentielle au processus de conception du projet, 2/ d'objet privilégié des logiciels de concept
MATH-205: Analysis IV - Lebesgue measure, Fourier analysis
Learn the basis of Lebesgue integration and Fourier analysis
PHYS-101(f): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Afficher plus
Séances de cours associées (72)
Diffusion dépendante du temps : Fourier Trick
Explore le Fourier Trick pour les problèmes de diffusion dépendant du temps dans un système cartésien.
Nombres complexes : Formules exponentielles
Couvre le processus d'activation d'une connexion domestique et explore les formules exponentielles, la formule d'Euler et les équations complexes.
Nombres complexes : Forme polaire, Pouvoirs, Racines
Explore les nombres complexes sous forme polaire, de puissances et de racines, y compris les relations trigonométriques et les matrices de rotation.
Afficher plus
Publications associées (2)

Azimuthal decorrelation of jets widely separated in rapidity in pp collisions at $ \sqrt{s}=7 $ TeV

Method and Apparatus for Generating Halftone Images by Discrete One-to-one Dither Tile Rotation

Roger Hersch

The invention relates to a method and apparatus for automatic high-speed generation of digital angled halftone screens, specially suited for obtaining screens approximating the irrational angles which are generally required by high-quality colour reproduct ...
1995
Concepts associés (9)
Nombre irrationnel
Un nombre irrationnel est un nombre réel qui n'est pas rationnel, c'est-à-dire qu'il ne peut pas s'écrire sous la forme d'une fraction a/b, où a et b sont deux entiers relatifs (avec b non nul). Les nombres irrationnels peuvent être caractérisés de manière équivalente comme étant les nombres réels dont le développement décimal n'est pas périodique ou dont le développement en fraction continue est infini. On distingue, parmi les nombres irrationnels, deux sous-ensembles complémentaires : les nombres algébriques non rationnels et les nombres transcendants.
Identité trigonométrique
Une identité trigonométrique est une relation impliquant des fonctions trigonométriques, vérifiée pour toutes les valeurs possibles des variables intervenant dans la relation. Ces identités peuvent servir à simplifier une expression comportant des fonctions trigonométriques ou à la transformer (par exemple pour en calculer une primitive). Elles constituent donc une « boîte à outils » utile pour la résolution de problèmes. Les fonctions trigonométriques sont définies géométriquement ou analytiquement.
Racine carrée de trois
La racine carrée de trois, notée ou 3, est, en mathématiques, le nombre réel positif dont le carré est 3 exactement. Elle vaut approximativement et une bonne approximation fractionnaire en est 97/56 (à 10 près). On l’appelle parfois constante de Théodore ,Théodore de Cyrène ayant démontré son irrationalité. le nombre 3 ayant deux racines carrées réelles, devrait se prononcer racine carrée positive de 3, mais on le prononce simplement racine carrée de 3, voire racine de 3 pour simplifier.
Afficher plus
MOOCs associés (2)
Fonctions Trigonométriques, Logarithmiques et Exponentielles
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Fonctions Trigonométriques, Logarithmiques et Exponentielles
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.