En théorie des probabilités et en statistiques, une distribution Gamma ou loi Gamma est un type de loi de probabilité de variables aléatoires réelles positives. La famille des distributions Gamma inclut, entre autres, la loi du χ2 et les distributions exponentielles et la distribution d'Erlang. Une distribution Gamma est caractérisée par deux paramètres k et θ et qui affectent respectivement la forme et l'échelle de la représentation graphique de sa fonction de densité. Les distributions Gamma sont utilisées pour modéliser une grande variété de phénomènes, et tout particulièrement les phénomènes se déroulant au cours du temps où par essence, le temps écoulé est une grandeur réelle positive ; c'est le cas par exemple dans l'analyse de survie. Soient k et θ deux réels strictement positifs. Une variable aléatoire X suit une loi Gamma de paramètres k et θ, ce que l'on note aussi (où Γ est la majuscule de la lettre grecque gamma) si sa fonction de densité de probabilité peut se mettre sous la forme : pour tout x > 0. Dans l'expression ci-dessus, Γ désigne la fonction Gamma d'Euler. Le paramètre k s'appelle le paramètre de forme, et le paramètre θ est un paramètre d'échelle. Alternativement, la distribution Gamma peut être paramétrée à l'aide d'un paramètre de forme α = k et d'un paramètre d'intensité (rate parameter) : Les deux paramétrages sont répandus, selon le contexte. On note la même notation et pour la loi pour les deux paramétrages. La notation est ambigüe, mais elle dépend du paramétrage choisi. La moyenne (espérance) d'une distribution gamma est le produit des paramètres de forme et d'échelle : La variance est donnée par : L'inverse de la racine carré du paramètre de forme donne le coefficient de variation : Le coefficient d'asymétrie d'une distribution gamma ne dépend que du paramètre de forme et vaut Pour tout n entier, le n-ième moment vaut : Si chaque X suit la loi Γ(k, θ) pour i = 1, 2, ..., N, et si les variables aléatoires X sont indépendantes, alors : Soit X une variable aléatoire qui suit une loi gamma de paramètres de forme k et d'échelle θ.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
FIN-417: Quantitative risk management
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
COM-406: Foundations of Data Science
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
Afficher plus
Séances de cours associées (157)
Physique du plasma : collisions et résistance
Couvre les collisions de Coulomb et la résistivité dans le plasma, mettant en évidence leur nature aléatoire de marche.
Produit commandé normal et théorème de Wick
Couvre le produit ordonné normal, le théorème de Wick, les champs de création et de destruction et la méthodologie de calcul efficace.
Règles Feynman I: statistiques asymptotiques et instantanés
Couvre les règles de Feynman, les statistiques asymptotiques, la commande normale et les instantanés.
Afficher plus
Publications associées (296)

Generalized Bradley-Terry Models for Score Estimation from Paired Comparisons

Julien René Pierre Fageot, Sadegh Farhadkhani, Oscar Jean Olivier Villemaud, Le Nguyen Hoang

Many applications, e.g. in content recommendation, sports, or recruitment, leverage the comparisons of alternatives to score those alternatives. The classical Bradley-Terry model and its variants have been widely used to do so. The historical model conside ...
AAAI Press2024

Generalization of Scaled Deep ResNets in the Mean-Field Regime

Volkan Cevher, Grigorios Chrysos, Fanghui Liu

Despite the widespread empirical success of ResNet, the generalization properties of deep ResNet are rarely explored beyond the lazy training regime. In this work, we investigate scaled ResNet in the limit of infinitely deep and wide neural networks, of wh ...
2024

Band Gap Renormalization at Different Symmetry Points in Perovskites

Majed Chergui, Lijie Wang

Using ultrafast broad-band transient absorption (TA) spectroscopy of photoexcited MAPbBr3 thin films with probe continua in the visible and the mid- to deep-ultraviolet (UV) ranges, we capture the ultrafast renormalization at the fundamental gap at the R s ...
Amer Chemical Soc2024
Afficher plus
Concepts associés (49)
Loi du χ²
En statistiques et en théorie des probabilités, la loi du centrée (prononcé « khi carré » ou « khi-deux ») avec k degrés de liberté est la loi de la somme de carrés de k lois normales centrées réduites indépendantes. La loi du est utilisée en inférence statistique et pour les tests statistiques notamment le test du χ2. La loi du χ2 non centrée généralise la loi du . Soient k variables aléatoires X, ... , X indépendantes suivant la loi normale centrée et réduite, c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.
Loi d'Erlang
La distribution d'Erlang est une loi de probabilité continue, dont l'intérêt est dû à sa relation avec les distributions exponentielle et Gamma. Cette distribution a été développée par Agner Krarup Erlang afin de modéliser le nombre d'appels téléphoniques simultanés. La distribution est continue et possède deux paramètres : le paramètre de forme , un entier, et le paramètre d'intensité , un réel. On utilise parfois une paramétrisation alternative, où on considère plutôt le paramètre d'échelle .
Loi de Weibull
En théorie des probabilités, la loi de Weibull, nommée d'après Waloddi Weibull en 1951, est une loi de probabilité continue. La loi de Weibull est un cas spécial de loi d'extremum généralisée au même titre que la loi de Gumbel ou la loi de Fréchet. Avec deux paramètres (pour x > 0), la densité de probabilité est : où k > 0 est le paramètre de forme et λ > 0 le paramètre d'échelle de la distribution.
Afficher plus
MOOCs associés (4)
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.