Résumé
La loi hypergéométrique de paramètres associés , et est une loi de probabilité discrète, décrivant le modèle suivant : On tire simultanément (ou successivement sans remise (mais cela induit un ordre)) boules dans une urne contenant boules gagnantes et boules perdantes (avec , soit un nombre total de boules valant = ). On compte alors le nombre de boules gagnantes extraites et on appelle la variable aléatoire donnant ce nombre. L'univers est l'ensemble des entiers de 0 à . La variable suit alors la loi de probabilité définie par (probabilité d'avoir succès). Cette loi de probabilité s'appelle la loi hypergéométrique de paramètres et l'on note . Il est nécessaire que soit un réel compris entre 0 et 1, que soit entier et que . Lorsque ces conditions ne sont pas imposées, l'ensemble des possibles est l'ensemble des entiers entre et . Un lac renferme une centaine de poissons dont un quart sont des brochets. On pêche 10 poissons ; la loi du nombre de brochets dans la prise est . On trouve alors pour les couples successifs : (0, 5%), (1, 18%), (2, 30%), (3, 26%), (4, 15%), (5, 5%), (6, 1%), (7, 0%), (8, 0%), (9, .0%), (10, 0%) Donc un maximum de chances pour 2 ou 3 brochets. D'ailleurs, l'espérance du nombre de brochets vaut 10/4 = 2,5. Il s'agit d'un tirage simultané (c'est-à-dire non ordonné et sans remise, même si la loi de probabilité resterait la même si l'on décidait d'ordonner le tirage car cela reviendrait à multiplier par le numérateur et le dénominateur de la quantité ) de éléments parmi , tirage que l'on considère comme équiprobable. La combinatoire permet de dire que le cardinal de l'univers est . L'évènement (voir tableau) représente le cas où l'on a tiré boules gagnantes parmi et boules perdantes parmi . Le cardinal de cet événement est donc . La probabilité de l'évènement est donc . Remarque : comme pour toute densité de probabilité, la somme des vaut 1, ce qui prouve l'identité de Vandermonde. L'espérance d'une variable aléatoire suivant une loi hypergéométrique de paramètres , est la même que celle d'une variable binomiale de paramètres : .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.