Calcul des séquentsEn logique mathématique et plus précisément en théorie de la démonstration, le calcul des séquents est un système de déduction créé par Gerhard Gentzen. Le nom de ce formalisme fait référence à un style particulier de déduction ; le système original a été adapté à diverses logiques, telles que la logique classique, la logique intuitionniste et la logique linéaire. Un séquent est une suite d'hypothèses suivie d'une suite de conclusions, les deux suites étant usuellement séparées par le symbole (taquet droit), « : » (deux-points) ou encore (flèche droite) dans l'œuvre originale de Gentzen.
Gerhard GentzenGerhard Gentzen ( à Greifswald - à Prague) est un mathématicien et logicien allemand, dont l'œuvre est fondamentale en théorie de la démonstration. Il fut l’un des étudiants de Weyl à l'université de Göttingen de 1929 à 1933. Il est mort dans un camp de prisonniers de guerre en 1945, après avoir été arrêté par les soviets à cause de ses loyautés nazies. Gentzen est un élève de Paul Bernays à l'université de Göttingen. Mais ce dernier ayant été renvoyé comme « non- aryen » en , Hermann Weyl devient formellement son directeur de thèse.
Déduction naturelleEn logique mathématique, la déduction naturelle est un système formel où les règles de déduction des démonstrations sont proches des façons naturelles de raisonner. C'est une étape importante de l'histoire de la théorie de la démonstration pour plusieurs raisons : contrairement aux systèmes à la Hilbert fondés sur des listes d'axiomes logiques plus ou moins ad hoc, la déduction naturelle repose sur un principe systématique de symétrie : pour chaque connecteur, on donne une paire de règles duales (introduction/élimination) ; elle a conduit Gentzen à inventer un autre formalisme très important en théorie de la démonstration, encore plus « symétrique » : le calcul des séquents ; elle a permis dans les années 1960 d'identifier la première instance de l'isomorphisme de Curry-Howard.
Cohérence (logique)En logique mathématique, la cohérence, ou consistance, d'une théorie axiomatique peut se définir de deux façons, soit par référence à la déduction : il n'est pas possible de tout démontrer à partir des axiomes de la théorie, soit par référence à la sémantique de la théorie : celle-ci possède des réalisations qui lui donnent un sens. La première définition est syntaxique au sens où elle utilise des déductions ou démonstrations, qui sont des objets finis.
Théorèmes d'incomplétude de GödelLes théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »). Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert.
Wilhelm AckermannWilhelm Ackermann (1896-1962) est un mathématicien allemand, célèbre pour la fonction d'Ackermann (1925) qui est un exemple important de la théorie de la calculabilité. Sa thèse (1924) donne une preuve détaillée de la cohérence de l'. Il fut professeur dans le secondaire, à Burgsteinfurt de 1929 à 1948, puis à Lüdenscheid jusqu'à sa retraite en 1961. Il fut membre correspondant de l'Académie des sciences de Göttingen et professeur honoraire de l'université de Münster.
Fondements des mathématiquesLes fondements des mathématiques sont les principes de la philosophie des mathématiques sur lesquels est établie cette science. Le logicisme a été prôné notamment par Gottlob Frege et Bertrand Russell. La mathématique pure présente deux caractéristiques : la généralité de son discours et la déductibilité du discours mathématique . En ce que le discours mathématique ne prétend qu’à une vérité formelle, il est possible de réduire les mathématiques à la logique, les lois logiques étant les lois du « vrai ».
Logique combinatoireEn logique mathématique, la logique combinatoire est une théorie logique introduite par Moses Schönfinkel en 1920 lors d'une conférence et développée dès 1929 par Haskell Brooks Curry pour supprimer le besoin de variables en mathématiques, pour formaliser rigoureusement la notion de fonction et pour minimiser le nombre d'opérateurs nécessaires pour définir le calcul des prédicats à la suite de Henry M. Sheffer. Plus récemment, elle a été utilisée en informatique comme modèle théorique de calcul et comme base pour la conception de langages de programmation fonctionnels.
LogiqueLa logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
ThéorèmeEn mathématiques et en logique, un théorème (du grec théorêma, objet digne d'étude) est une assertion qui est démontrée, c'est-à-dire établie comme vraie à partir d'autres assertions déjà démontrées (théorèmes ou autres formes d'assertions) ou des assertions acceptées comme vraies, appelées axiomes. Un théorème se démontre dans un système déductif et est une conséquence logique d'un système d'axiomes. En ce sens, il se distingue d'une loi scientifique, obtenue par l'expérimentation.