In computational complexity theory, the time hierarchy theorems are important statements about time-bounded computation on Turing machines. Informally, these theorems say that given more time, a Turing machine can solve more problems. For example, there are problems that can be solved with n2 time but not n time.
The time hierarchy theorem for deterministic multi-tape Turing machines was first proven by Richard E. Stearns and Juris Hartmanis in 1965. It was improved a year later when F. C. Hennie and Richard E. Stearns improved the efficiency of the Universal Turing machine. Consequent to the theorem, for every deterministic time-bounded complexity class, there is a strictly larger time-bounded complexity class, and so the time-bounded hierarchy of complexity classes does not completely collapse. More precisely, the time hierarchy theorem for deterministic Turing machines states that for all time-constructible functions f(n),
where DTIME(f(n)) denotes the complexity class of decision problems solvable in time O(f(n)). Note that the left-hand class involves little o notation, referring to the set of decision problems solvable in asymptotically less than f(n) time.
The time hierarchy theorem for nondeterministic Turing machines was originally proven by Stephen Cook in 1972. It was improved to its current form via a complex proof by Joel Seiferas, Michael Fischer, and Albert Meyer in 1978. Finally in 1983, Stanislav Žák achieved the same result with the simple proof taught today. The time hierarchy theorem for nondeterministic Turing machines states that if g(n) is a time-constructible function, and f(n+1) = o(g(n)), then
The analogous theorems for space are the space hierarchy theorems. A similar theorem is not known for time-bounded probabilistic complexity classes, unless the class also has one bit of advice.
Both theorems use the notion of a time-constructible function. A function is time-constructible if there exists a deterministic Turing machine such that for every , if the machine is started with an input of n ones, it will halt after precisely f(n) steps.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours aborde les concepts fondamentaux de la programmation et de la programmation orientée objet (langage JAVA). Il permet également de se familisarier avec un environnement de développement inform
La classe P, aussi noté parfois PTIME ou DTIME(nO(1)), est une classe très importante de la théorie de la complexité, un domaine de l'informatique théorique et des mathématiques. Par définition, un problème de décision est dans P s'il est décidé par une machine de Turing déterministe en temps polynomial par rapport à la taille de l'entrée. On dit que le problème est décidé en temps polynomial. Les problèmes dans P sont considérés comme « faisables » (feasible en anglais), faciles à résoudre (dans le sens où on peut le faire relativement rapidement).
En informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.
Explore la décomposition dans la programmation en évaluant les expressions et en ajoutant de nouvelles formes, en mettant l'accent sur les solutions orientées objet et les compromis impliqués.
Isogeometric analysis is a powerful paradigm which exploits the high smoothness of splines for the numerical solution of high order partial differential equations. However, the tensor-product structure of standard multivariate B-spline models is not well s ...
To bring educational robots to classrooms, we need to consider teachers' self-efficacy and challenges in managing a robot-mediated classroom, and how to support them in overcoming these challenges. Orchestration tools are designed to support teachers by pr ...
The goal of this paper is to characterize function distributions that general neural networks trained by descent algorithms (GD/SGD), can or cannot learn in polytime. The results are: (1) The paradigm of general neural networks trained by SGD is poly-time ...