Prismatic uniform polyhedronIn geometry, a prismatic uniform polyhedron is a uniform polyhedron with dihedral symmetry. They exist in two infinite families, the uniform prisms and the uniform antiprisms. All have their vertices in parallel planes and are therefore prismatoids. Because they are isogonal (vertex-transitive), their vertex arrangement uniquely corresponds to a symmetry group.
Pentagrammic crossed-antiprismIn geometry, the pentagrammic crossed-antiprism is one in an infinite set of nonconvex antiprisms formed by triangle sides and two regular star polygon caps, in this case two pentagrams. It differs from the pentagrammic antiprism by having opposite orientations on the two pentagrams. This polyhedron is identified with the indexed name U80 as a uniform polyhedron. The pentagrammic crossed-antiprism may be inscribed within an icosahedron, and has ten triangular faces in common with the great icosahedron.
Antiprisme carré adouciEn géométrie, l'antiprisme carré adouci est un des solides de Johnson (J85). C'est un des solides de Johnson élémentaires qui n'apparaît pas à partir de manipulation en "copier/coller" de solides de Platon et de solides d'Archimède. Il peut être conçu comme un antiprisme carré avec une chaîne de triangles insérés autour du milieu. Un effet similaire peut être réalisé avec un antiprisme triangulaire (un octaèdre), ce qui donne un icosaèdre. Les 92 solides de Johnson ont été nommés et décrits par Norman Johnson en 1966.
Sphère médianevignette| Un polyèdre et sa sphère médiane en bleu. Les cercles rouges sont les limites des calottes sphériques dans lesquelles la surface de la sphère est visible depuis chaque sommet. vignette|Cube et son octaèdre dual avec sphère médiane commune. En géométrie, la sphère médiane ou intersphère d'un polyèdre est une sphère qui est tangente à chaque arête du polyèdre, c'est-à-dire qu'elle touche chacune des arêtes en exactement un point.
Antiprisme pentagrammiqueIn geometry, the pentagrammic antiprism is one in an infinite set of nonconvex antiprisms formed by triangle sides and two regular star polygon caps, in this case two pentagrams. It has 12 faces, 20 edges and 10 vertices. This polyhedron is identified with the indexed name U79 as a uniform polyhedron. Note that the pentagram face has an ambiguous interior because it is self-intersecting. The central pentagon region can be considered interior or exterior depending on how interior is defined.
Dihedral symmetry in three dimensionsIn geometry, dihedral symmetry in three dimensions is one of three infinite sequences of point groups in three dimensions which have a symmetry group that as an abstract group is a dihedral group Dihn (for n ≥ 2). There are 3 types of dihedral symmetry in three dimensions, each shown below in 3 notations: Schönflies notation, Coxeter notation, and orbifold notation. Chiral Dn, [n,2]+, (22n) of order 2n – dihedral symmetry or para-n-gonal group (abstract group: Dihn).
Antiprisme hexagonalEn géométrie, l'antiprisme hexagonal est le quatrième solide de l'ensemble infini des antiprismes. Celui-ci peuvent être regardé comme un prisme hexagonal dont on a opéré une fraction de tour sur une des deux faces supérieure ou inférieure pour faire coïncider un sommet avec le milieu de l'arête correspondante. Ce qui a pour résultat une suite de triangles en nombre pair sur les côtés, et deux faces hexagonales supérieure et inférieure. Si toutes ses faces sont régulières, c'est un polyèdre semi-régulier.
Polyhedral skeletal electron pair theoryIn chemistry the polyhedral skeletal electron pair theory (PSEPT) provides electron counting rules useful for predicting the structures of clusters such as borane and carborane clusters. The electron counting rules were originally formulated by Kenneth Wade, and were further developed by others including Michael Mingos; they are sometimes known as Wade's rules or the Wade–Mingos rules. The rules are based on a molecular orbital treatment of the bonding. These rules have been extended and unified in the form of the Jemmis mno rules.
ApeirogoneEn géométrie, un apeirogone (du "ἄπειρος" apeiros : infini, sans bornes, et "γωνία" gonia : angle) est un polygone généralisé ayant un nombre infini (dénombrable) de côtés. Le plus souvent, le terme désigne un polygone régulier convexe (tous les angles et tous les côtés sont égaux, et les côtés ne se croisent pas) ; il n'existe pas à ce sens d'apeirogone non trivial en géométrie euclidienne, mais il y en a plusieurs familles (non semblables les unes aux autres) en géométrie hyperbolique. H. S. M.
Edge-contracted icosahedronIn geometry, an edge-contracted icosahedron is a polyhedron with 18 triangular faces, 27 edges, and 11 vertices. It can be constructed from the regular icosahedron, with one edge contraction, removing one vertex, 3 edges, and 2 faces. This contraction distorts the circumscribed sphere original vertices. With all equilateral triangle faces, it has 2 sets of 3 coplanar equilateral triangles (each forming a half-hexagon), and thus is not a Johnson solid.