Méthode chakravalaEn mathématiques et plus précisément en arithmétique, la méthode chakravala est un algorithme pour résoudre l'équation de Pell-Fermat. Cette équation est un exemple d'équation diophantienne, c'est-à-dire à coefficients entiers et dont on cherche les solutions entières. Plus précisément, c'est l'équation où n est un entier naturel non carré. Cette méthode fut développée en Inde et ses racines peuvent être retracées jusqu'au avec Aryabhata, suivi par Brahmagupta. Initiée par , elle fut développée plus avant par Bhāskara II.
Algebraic expressionIn mathematics, an algebraic expression is an expression built up from constant algebraic numbers, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number). For example, 3x2 − 2xy + c is an algebraic expression. Since taking the square root is the same as raising to the power 1/2, the following is also an algebraic expression: An algebraic equation is an equation involving only algebraic expressions.
Manuscrit de Bakhshalivignette|upright=1.4|Ecriture des chiffres dans le manuscrit de Bakhshali. alt=|350x350px|Bakhshali manuscript Morceau de parchemin. Le manuscrit de Bakhshali est un recueil de textes mathématiques trouvé en 1881 près du village de au Pakistan, à 80 km au nord-est de Peshawar. Écrit sur de l'écorce de bouleau, c'est le plus ancien document montrant l'utilisation du zéro et il est considéré comme le plus ancien manuscrit traitant des mathématiques indiennes. Il est conservé depuis 1902 à la bibliothèque Bodléienne à Oxford.
Indeterminate equationIn mathematics, particularly in algebra, an indeterminate equation is an equation for which there is more than one solution. For example, the equation is a simple indeterminate equation, as is . Indeterminate equations cannot be solved uniquely. In fact, in some cases it might even have infinitely many solutions. Some of the prominent examples of indeterminate equations include: Univariate polynomial equation: which has multiple solutions for the variable in the complex plane—unless it can be rewritten in the form .
SridharaŚrīdhara, Śrīdharācāryya or Śrīdhara Acharya ( 870 CE – 930 CE) was an Indian mathematician, Sanskrit pandit and philosopher. He was born in Bhuriśreṣṭi (Bhurisriṣṭi or Bhurśuṭ) village in South Rādha at present day Hugli in West Bengal, then undivided Bengal with its Capital at Gaur. His father's name was Baladevācārya or Baladeva Acharya and his mother's name was Acchoka Devi. His father was a Sanskrit pandit . He is known for two main treatises: Trisatika (300) (sometimes called the Patiganitasara ) and the Pāṭīgaṇita (পাটীগণিত).
Equation solvingIn mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign. When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of values to the unknown variables that makes the equality in the equation true. In other words, a solution is a value or a collection of values (one for each unknown) such that, when substituted for the unknowns, the equation becomes an equality.
Algebraic operationIn mathematics, a basic algebraic operation is any one of the common operations of arithmetic, which include addition, subtraction, multiplication, division, raising to a whole number power, and taking roots (fractional power). These operations may be performed on numbers, in which case they are often called arithmetic operations. They may also be performed, in a similar way, on variables, algebraic expressions, and more generally, on elements of algebraic structures, such as groups and fields.
Théorie des équations (histoire des sciences)thumb|upright|Évariste Galois offre une condition nécessaire et suffisante à la résolution d'une équation polynomiale par l’algèbre. Il répond ainsi à une question centrale de la théorie, ouverte depuis des millénaires. Sa méthode fournit des résultats novateurs, à l’origine de nouvelles branches de l’algèbre, qui dépassent le cadre de la théorie des équations. La théorie des équations est un ensemble de travaux ayant pour objectif premier la résolution d’équations polynomiales ou équivalentes.
Non-associative algebraA non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation.
Algèbre symétriqueEn mathématiques, l'algèbre symétrique est une algèbre sur un corps associative, commutative et unifère utilisée pour définir des polynômes sur un espace vectoriel. L'algèbre symétrique est un outil important dans la théorie des algèbres de Lie et en topologie algébrique dans la théorie des classes caractéristiques. Soit E un espace vectoriel, l'algèbre symétrique de E, notée, S (E) ou Sym (E) est l'algèbre quotient de l'algèbre tensorielle T (E) par l'idéal bilatère I (E) engendré par les éléments où u et v sont des éléments de E.