Astronomie mésopotamienneL’astronomie mésopotamienne désigne les théories et les méthodes astronomiques développées dans l’ancienne Mésopotamie, en particulier durant le en Assyrie (nord de l'Irak actuel) et en Babylonie (sud de l'Irak), étudiant les phénomènes célestes réguliers. La première démarche nécessaire à la construction d'un savoir astronomique était l'observation des phénomènes astraux, donc une démarche empirique.
Identité d'EulerEn mathématiques, l'identité d'Euler est une relation entre plusieurs constantes fondamentales et utilisant les trois opérations arithmétiques d'addition, multiplication et exponentiation : où la base e du logarithme naturel représente l'analyse, l'unité imaginaire i représente l'algèbre, la constante d'Archimède π représente la géométrie, . Elle est nommée d'après le mathématicien Leonhard Euler qui la fait apparaître dans son Introductio, publié à Lausanne en 1748.
Sine and cosineIn mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .
Trigonométrie sphériqueLa trigonométrie sphérique est un ensemble de relations analogues à celles de la trigonométrie euclidienne mais portant sur les angles et distances repérés sur une sphère. La figure de base est le triangle sphérique, délimité non plus par des segments de droites mais par des arcs de demi-grands cercles de cette sphère. Les règles habituelles de la trigonométrie euclidienne ne sont pas applicables ; par exemple la somme des angles d'un triangle situé sur une sphère, s'ils sont exprimés en degrés, est supérieure à 180 degrés.
Histoire des fonctions trigonométriquesL’histoire des fonctions trigonométriques semble avoir débuté il y a environ ans. Nous savons de façon certaine que les Babyloniens déterminaient des approximations de mesures d'angles ou de longueurs de côtés de triangles rectangles. Plusieurs tables de nombres gravés sur de l'argile séchée en témoignent. Une tablette babylonienne écrite en cunéiforme, nommée Plimpton 322 (environ 1900 av. J.-C.) montre quinze triplets pythagoriciens et une colonne de nombres, qui peut être interprétée comme une table de sécantes.
ArpentageL'arpentage est la technique de la mesure de la superficie des terres, en particulier des terrains agricoles. À l'origine du développement de la géométrie, l'arpentage s'est développé en Égypte ancienne pour le relevé des surfaces agricoles après les crues du Nil. Investi à l'origine d'une signification quasi religieuse, sa pratique était tenue en haute estime dans la Rome antique. De nombreuses techniques d'arpentage ont été élaborées au cours des siècles, les plus récentes utilisant des satellites artificiels.
John NapierJohn Napier (), parfois francisé en Jean Neper, né le et mort le , est un théologien, physicien, astronome et mathématicien écossais. En 1614, il publie son traité Mirifici Logarithmorum Canonis Descriptio. Il ne songe pas qu’il est en train de créer de nouvelles fonctions, mais seulement des tables de correspondance (logos = rapport, relation, arithmeticos = nombre) entre deux séries de valeurs possédant la propriété suivante : à un produit dans une colonne correspond une somme dans une autre.
Calculatrice scientifiqueUne calculatrice scientifique est un type de calculatrice électronique possédant diverses possibilités d'applications scientifiques : fonctions trigonométriques usuelles, calcul de logarithmes ou, dans le cas des calculatrices graphiques, la capacité de tracer des graphiques. La calculatrice scientifique ne doit pas être confondue avec la calculatrice programmable.
Fonction hyperboliqueEn mathématiques, on appelle fonctions hyperboliques les fonctions cosinus hyperbolique, sinus hyperbolique et tangente hyperbolique. Les noms « sinus », « cosinus » et « tangente » proviennent de leur ressemblance avec les fonctions trigonométriques (dites « circulaires » car en relation avec le cercle unité x + y = 1) et le terme « hyperbolique » provient de leur relation avec l'hyperbole d'équation x – y = 1. Elles sont utilisées en analyse pour le calcul intégral, la résolution des équations différentielles mais aussi en géométrie hyperbolique.
James Gregory (mathématicien)James Gregory (novembre 1638 – octobre 1675) est un mathématicien et un astronome écossais. Il est né à Drumoak près d'Aberdeen et mort à Édimbourg. Il a été professeur à l'Université de St Andrews et à l'université d'Édimbourg. En 1660, il publie Optica Promota, dans lequel il décrit un modèle de télescope qui porte aujourd'hui son nom. Ce télescope attira l'attention de plusieurs scientifiques : Robert Hooke, le physicien d'Oxford qui le construisit finalement, Sir Robert Moray, membre fondateur de la Royal Society et Isaac Newton, qui travaillait sur un projet similaire.