Table de transition d'étatDans la théorie des automates et en logique séquentielle, une table de transition d'état est un tableau montrant dans quel état (ou états dans le cas d'un automate fini non déterministe) d'un automate fini se déplacer, sur la base de l'état actuel et des autres entrées. Une table d'état est essentiellement une table de vérité, dans laquelle certaines des entrées sont l'état actuel, et les sorties comprennent l'état suivant, en même temps que les autres sorties.
Automate fini déterministeUn automate fini déterministe, parfois abrégé en AFD (en anglais deterministic finite automaton, abrégé en DFA) est un automate fini dont les transitions à partir de chaque état sont déterminées de façon unique par le symbole d'entrée. Un tel automate se distingue ainsi d'un automate fini non déterministe, où au contraire plusieurs possibilités de transitions peuvent exister simultanément pour un état et un symbole d'entrée donné.
Automate fini non déterministeUn automate fini (on dit parfois, par une traduction littérale de l'anglais, machine à états finis, au lieu de machine avec un nombre fini d'états ou machine à états finie ou machine finie à états), finite-state automaton ou finite-state machine (FSA, FSM), est une machine abstraite qui est un outil fondamental en mathématiques discrètes et en informatique. On les retrouve dans la modélisation de processus, le contrôle, les protocoles de communication, la vérification de programmes, la théorie de la calculabilité, dans l'étude des langages formels et en compilation.
Graphe orientéthumb|Un graphe orienté .(Figure 1) Dans la théorie des graphes, un graphe orienté est un couple formé de un ensemble, appelé ensemble de nœuds et un ensemble appelé ensemble d'arêtes. Les arêtes sont alors nommées arcs, chaque arête étant un couple de noeuds, représenté par une flèche. Étant donné un arc , on dit que est l'origine (ou la source ou le départ ou le début) de et que est la cible (ou l'arrivée ou la fin) de . Le demi-degré extérieur (degré sortant) d'un nœud, noté , est le nombre d'arcs ayant ce nœud pour origine.
Machine de MealyEn informatique théorique, notamment en théorie des automates, et en théorie de la calculabilité, une machine de Mealy ou automate de Mealy est un transducteur fini (i.e. un automate fini avec une sortie) pour lequel les sorties dépendent à la fois de l'état courant et des symboles d'entrée. Cela signifie que l'étiquette de chaque transition est un couple formé d'une lettre d'entrée et d'une lettre de sortie. En particulier, la longueur du mot de sortie est égale à la longueur du mot d'entrée.
Machine de Moorethumb|Le diagramme états-transitions d'une machine de Moore avec une fonction de transition partielle. Les entrées sont x, y, z, et les sorties a, b, c. En informatique théorique, notamment en théorie des automates, et en théorie de la calculabilité, une machine de Moore ou automate de Moore (proposée par Edward F. Moore) est un transducteur fini (i.e. un automate fini avec une sortie) pour lequel les sorties ne dépendent que de l'état courant. Cela signifie que chaque état est doté d'une lettre de sortie.
UML (informatique)Le Langage de Modélisation Unifié, de l'anglais Unified Modeling Language (UML), est un langage de modélisation graphique à base de pictogrammes conçu comme une méthode normalisée de visualisation dans les domaines du développement logiciel et en conception orientée objet. L'UML est une synthèse de langages de modélisation objet antérieurs : Booch, OMT, OOSE. Principalement issu des travaux de Grady Booch, James Rumbaugh et Ivar Jacobson, UML est à présent un standard adopté par l'Object Management Group (OMG).
Automate finithumb|upright=2|Fig. 1 : Une hiérarchie d'automates. Un automate fini ou automate avec un nombre fini d'états (en anglais finite-state automaton ou finite state machine ou FSM) est un modèle mathématique de calcul, utilisé dans de nombreuses circonstances, allant de la conception de programmes informatiques et de circuits en logique séquentielle aux applications dans des protocoles de communication, en passant par le contrôle des processus, la linguistique et même la biologie.
Théorie des automatesEn informatique théorique, l'objectif de la théorie des automates est de proposer des modèles de mécanismes mathématiques qui formalisent les méthodes de calcul.