Opérateur unitaireEn analyse fonctionnelle, un opérateur unitaire est un opérateur linéaire U d'un espace de Hilbert tel queUU = UU = Ioù U* est l'adjoint de U, et I l'opérateur identité. Cette propriété est équivalente à : U est une application d' dense et U préserve le produit scalaire ⟨ , ⟩. Autrement dit, pour tous vecteurs x et y de l'espace de Hilbert, ⟨Ux, Uy⟩ = ⟨x, y⟩ (ce qui entraîne que U est linéaire). D'après l'identité de polarisation, on peut remplacer « U préserve le produit scalaire » par « U préserve la norme » donc par « U est une isométrie qui fixe 0 ».
Canonical formIn mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a unique representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness.
Borel functional calculusIn functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus (that is, an assignment of operators from commutative algebras to functions defined on their spectra), which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function s → s2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential The 'scope' here means the kind of function of an operator which is allowed.
Stone's theorem on one-parameter unitary groupsIn mathematics, Stone's theorem on one-parameter unitary groups is a basic theorem of functional analysis that establishes a one-to-one correspondence between self-adjoint operators on a Hilbert space and one-parameter families of unitary operators that are strongly continuous, i.e., and are homomorphisms, i.e., Such one-parameter families are ordinarily referred to as strongly continuous one-parameter unitary groups.