Michael AtiyahSir Michael Francis Atiyah, né le à Londres et mort le , est un mathématicien anglais d'origine libanaise, fils de l'écrivain Edward Atiyah. Il est professeur à l'université d'Oxford, à l'université de Cambridge et à l'université de Princeton. Membre de la Royal Society depuis 1962, il en est président de 1990 à 1995. Il est lauréat de la médaille Fields 1966, du prix Abel 2004 et de la grande médaille 2010.
Eugene WignerEugene Paul Wigner (en hongrois Wigner Jenő Pál, prononcé ; – ) est un physicien théoricien hongrois naturalisé américain. En 1963, Wigner, Maria Goeppert-Mayer et Hans Daniel Jensen partagèrent le prix Nobel de physique pour leur travail sur l'explication de la structure du noyau atomique et son développement de la théorie de mécanique quantique concernant la nature du proton et du neutron. vignette|gauche|Werner Heisenberg et Eugene Wigner en 1928.
Physique théoriquevignette|Discussion entre physiciens théoriciens à l'École de physique des Houches. La physique théorique est la branche de la physique qui étudie l’aspect théorique des lois physiques et en développe le formalisme mathématique. C'est dans ce domaine que l'on crée les théories, les équations et les constantes en rapport avec la physique. Elle constitue un champ d'études intermédiaire entre la physique expérimentale et les mathématiques, et a souvent contribué au développement de l’une comme de l’autre.
Groupe symplectiqueEn mathématiques, le terme groupe symplectique est utilisé pour désigner deux familles différentes de groupes linéaires. On les note Sp(2n, K) et Sp(n), ce dernier étant parfois nommé groupe compact symplectique pour le distinguer du premier. Cette notation ne fait pas l’unanimité et certains auteurs en utilisent d’autres, différant généralement d’un facteur 2. La notation utilisée dans cet article est en rapport avec la taille des matrices représentant les groupes.
Géométrie riemanniennevignette|275px|L'étude de la forme de l'univers est une adaptation des idées et méthodes de la géométrie riemannienne La géométrie riemannienne est une branche de la géométrie différentielle nommée en l'honneur du mathématicien Bernhard Riemann, qui introduisit les concepts fondateurs de variété géométrique et de courbure. Il s'agit de surfaces ou d'objets de plus grande dimension sur lesquels existent des notions d'angle et de longueur, généralisant la géométrie traditionnelle qui se limitait à l'espace euclidien.
Trou de vervignette|Exemple de trou de ver dans une métrique de Schwarzschild, tel qu'il serait vu par un observateur ayant franchi l'horizon du trou noir. La région d'où vient l'observateur est située à droite de l'image. Mise à part la région située près de l'ombre du trou noir, les effets de décalage vers le rouge gravitationnel rendent le fond du ciel très sombre. Celui-ci est en revanche très lumineux dans la seconde région, visible une fois l'horizon passé.
Hermann MinkowskiHermann Minkowski, né à Alexotas (alors en Russie, dans le Gouvernement de Suwałki, et aujourd'hui en Lituanie) le et mort à Göttingen le , est un mathématicien et un physicien théoricien allemand. Hermann Minkowski naît le à Alexotas près de Kaunas dans une famille juive. Il est le cadet des trois enfants de Lewin Minkowski et de son épouse Rachel, née Raubmann. En , les Minkowski quittent Alexotas pour Königsberg. Minkowski y passe le reste de son enfance.
Théorie spectraleEn mathématiques, et plus particulièrement en analyse, une théorie spectrale est une théorie étendant à des opérateurs définis sur des espaces fonctionnels généraux la théorie élémentaire des valeurs propres et des vecteurs propres de matrices. Bien que ces idées viennent au départ du développement de l'algèbre linéaire, elles sont également liées à l'étude des fonctions analytiques, parce que les propriétés spectrales d'un opérateur sont liées à celles de fonctions analytiques sur les valeurs de son spectre.
David HilbertDavid Hilbert, né en 1862 à Königsberg et mort en 1943 à Göttingen, est un mathématicien allemand. Il est souvent considéré comme un des plus grands mathématiciens du . Il a créé ou développé un large éventail d'idées fondamentales, que ce soit la théorie des invariants, l'axiomatisation de la géométrie ou les fondements de l'analyse fonctionnelle (avec les espaces de Hilbert). L'un des exemples les mieux connus de sa position de chef de file est sa présentation, en 1900, de ses fameux problèmes qui ont durablement influencé les recherches mathématiques du .
IntuitionnismeL'intuitionnisme est une philosophie des mathématiques que L. E. J. Brouwer a élaborée au début du . Pour Brouwer, les mathématiques sont une libre création de l'esprit humain et tous les objets qu'elles manipulent doivent être accessibles à l'intuition. L'intuitionnisme a pour conséquence une profonde remise en cause des mathématiques, notamment en refusant l'infini actuel : un nombre réel ne peut être représenté comme une suite infinie de décimales qu'à la condition de disposer d'un moyen effectif de calculer chacune de ces décimales ; on parle alors de réel constructif.