Prime omega functionIn number theory, the prime omega functions and count the number of prime factors of a natural number Thereby (little omega) counts each distinct prime factor, whereas the related function (big omega) counts the total number of prime factors of honoring their multiplicity (see arithmetic function). That is, if we have a prime factorization of of the form for distinct primes (), then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.
Fonction somme des puissances k-ièmes des diviseursEn mathématiques, la fonction "somme des puissances k-ièmes des diviseurs", notée , est la fonction multiplicative qui à tout entier n > 0 associe la somme des puissances -ièmes des diviseurs positifs de n, où est un nombre complexe quelconque : La fonction est multiplicative, c'est-à-dire que, pour tous entiers et n premiers entre eux, . En effet, est le produit de convolution de deux fonctions multiplicatives : la fonction puissance -ième et la fonction constante 1.
Fonction arithmétiqueEn théorie des nombres, une fonction arithmétique f est une application définie sur l'ensemble des entiers strictement positifs et à valeurs dans l'ensemble des nombres complexes. En d'autres termes, une fonction arithmétique n'est rien d'autre qu'une suite de nombres complexes, indexée par N*. Les fonctions arithmétiques les plus étudiées sont les fonctions additives et les fonctions multiplicatives. Une opération importante sur les fonctions arithmétiques est le produit de convolution de Dirichlet.
Série de DirichletEn mathématiques, une série de Dirichlet est une série f(s) de fonctions définies sur l'ensemble C des nombres complexes, et associée à une suite (a) de nombres complexes de l'une des deux façons suivantes : Ici, la suite (λ) est réelle, positive, strictement croissante et non bornée. Le domaine de convergence absolue d'une série de Dirichlet est soit un demi-plan ouvert de C, limité par une droite dont tous les points ont même abscisse, soit l'ensemble vide, soit C tout entier. Le domaine de convergence simple est de même nature.
DiviseurLe mot “diviseur” a deux significations en mathématiques. Une division est effectuée à partir d’un “dividende” et d’un “diviseur”, et une fois l’opération terminée, le produit du “quotient” par le diviseur augmenté du “reste” est égal au dividende. En arithmétique, un “diviseur” d'un entier n est un entier dont n est un multiple. Plus formellement, si d et n sont deux entiers, d est un diviseur de n seulement s'il existe un entier k tel que . Ainsi est un diviseur de car .
Indicatrice d'Eulervignette|upright=1.5|Les mille premières valeurs de φ(n). En mathématiques, l'indicatrice d'Euler est une fonction arithmétique de la théorie des nombres, qui à tout entier naturel n non nul associe le nombre d'entiers compris entre 1 et n (inclus) et premiers avec n. Elle intervient en mathématiques pures, à la fois en théorie des groupes, en théorie algébrique des nombres et en théorie analytique des nombres. En mathématiques appliquées, à travers l'arithmétique modulaire, elle joue un rôle important en théorie de l'information et plus particulièrement en cryptologie.
Fonction multiplicativeEn arithmétique, une fonction multiplicative est une fonction arithmétique f : N* → C vérifiant les deux conditions suivantes : f(1) = 1 ; pour tous entiers a et b > 0 premiers entre eux, on a : f (ab) = f(a)f(b). Une fonction complètement multiplicative est une fonction arithmétique g vérifiant : g(1) = 1 ; pour tous entiers a et b > 0, on a : g(ab) = g(a)g(b). Ces dénominations peuvent varier d'un ouvrage à un autre : fonction faiblement multiplicative pour fonction multiplicative, fonction multiplicative ou totalement multiplicative pour fonction complètement multiplicative.
Formule d'inversion de MöbiusLa formule d'inversion de Möbius classique a été introduite dans la théorie des nombres au cours du par August Ferdinand Möbius. Elle a été généralisée plus tard à d'autres « formules d'inversion de Möbius ». La version classique déclare que pour toutes fonctions arithmétiques f et g, on a si et seulement si f est la transformée de Möbius de g, où μ est la fonction de Möbius et les sommes portent sur tous les diviseurs strictement positifs d de n.