Résumé
In number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n. There is a larger class of number-theoretic functions that do not fit the above definition, for example, the prime-counting functions. This article provides links to functions of both classes. Arithmetic functions are often extremely irregular (see table), but some of them have series expansions in terms of Ramanujan's sum. An arithmetic function a is completely additive if a(mn) = a(m) + a(n) for all natural numbers m and n; completely multiplicative if a(mn) = a(m)a(n) for all natural numbers m and n; Two whole numbers m and n are called coprime if their greatest common divisor is 1, that is, if there is no prime number that divides both of them. Then an arithmetic function a is additive if a(mn) = a(m) + a(n) for all coprime natural numbers m and n; multiplicative if a(mn) = a(m)a(n) for all coprime natural numbers m and n. In this article, and mean that the sum or product is over all prime numbers: and Similarly, and mean that the sum or product is over all prime powers with strictly positive exponent (so k = 0 is not included): The notations and mean that the sum or product is over all positive divisors of n, including 1 and n. For example, if n = 12, then The notations can be combined: and mean that the sum or product is over all prime divisors of n. For example, if n = 18, then and similarly and mean that the sum or product is over all prime powers dividing n. For example, if n = 24, then The fundamental theorem of arithmetic states that any positive integer n can be represented uniquely as a product of powers of primes: where p1 < p2 < ..
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (2)
Concepts associés (41)
Fonction arithmétique
En théorie des nombres, une fonction arithmétique f est une application définie sur l'ensemble des entiers strictement positifs et à valeurs dans l'ensemble des nombres complexes. En d'autres termes, une fonction arithmétique n'est rien d'autre qu'une suite de nombres complexes, indexée par N*. Les fonctions arithmétiques les plus étudiées sont les fonctions additives et les fonctions multiplicatives. Une opération importante sur les fonctions arithmétiques est le produit de convolution de Dirichlet.
Série de Dirichlet
En mathématiques, une série de Dirichlet est une série f(s) de fonctions définies sur l'ensemble C des nombres complexes, et associée à une suite (a) de nombres complexes de l'une des deux façons suivantes : Ici, la suite (λ) est réelle, positive, strictement croissante et non bornée. Le domaine de convergence absolue d'une série de Dirichlet est soit un demi-plan ouvert de C, limité par une droite dont tous les points ont même abscisse, soit l'ensemble vide, soit C tout entier. Le domaine de convergence simple est de même nature.
Fonction de Möbius
En mathématiques, la fonction de Möbius désigne généralement une fonction multiplicative particulière, définie sur les entiers strictement positifs et à valeurs dans l'ensemble {–1, 0, 1}. Elle intervient dans la formule d'inversion de Möbius. Elle est utilisée dans des branches différentes des mathématiques. Vue sous un angle élémentaire, la fonction de Möbius permet certains calculs de dénombrement, en particulier pour l'étude des p-groupes ou en théorie des graphes.
Afficher plus
Cours associés (30)
MATH-313: Introduction to analytic number theory
The aim of this course is to present the basic techniques of analytic number theory.
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Afficher plus
Séances de cours associées (328)
Dérivés et continuité dans les fonctions multivariables
Couvre les dérivés et la continuité dans les fonctions multivariables, soulignant l'importance des dérivés partiels.
Chaos quantique et brouillage
Explore le concept de brouillage dans les systèmes chaotiques quantiques, reliant le chaos classique au chaos quantique et mettant l'accent sur la sensibilité aux conditions initiales.
Fonctions arithmétiques
Couvre l'analyse des fonctions arithmétiques, y compris les nombres premiers et l'hypothèse de Riemann.
Afficher plus