Concept

Formal scheme

Résumé
In mathematics, specifically in algebraic geometry, a formal scheme is a type of space which includes data about its surroundings. Unlike an ordinary scheme, a formal scheme includes infinitesimal data that, in effect, points in a direction off of the scheme. For this reason, formal schemes frequently appear in topics such as deformation theory. But the concept is also used to prove a theorem such as the theorem on formal functions, which is used to deduce theorems of interest for usual schemes. A locally Noetherian scheme is a locally Noetherian formal scheme in the canonical way: the formal completion along itself. In other words, the category of locally Noetherian formal schemes contains all locally Noetherian schemes. Formal schemes were motivated by and generalize Zariski's theory of formal holomorphic functions. Algebraic geometry based on formal schemes is called formal algebraic geometry. Formal schemes are usually defined only in the Noetherian case. While there have been several definitions of non-Noetherian formal schemes, these encounter technical problems. Consequently, we will only define locally noetherian formal schemes. All rings will be assumed to be commutative and with unit. Let A be a (Noetherian) topological ring, that is, a ring A which is a topological space such that the operations of addition and multiplication are continuous. A is linearly topologized if zero has a base consisting of ideals. An ideal of definition for a linearly topologized ring is an open ideal such that for every open neighborhood V of 0, there exists a positive integer n such that . A linearly topologized ring is preadmissible if it admits an ideal of definition, and it is admissible if it is also complete. (In the terminology of Bourbaki, this is "complete and separated".) Assume that A is admissible, and let be an ideal of definition. A prime ideal is open if and only if it contains . The set of open prime ideals of A, or equivalently the set of prime ideals of , is the underlying topological space of the formal spectrum of A, denoted Spf A.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.