In statistics, a sum of squares due to lack of fit, or more tersely a lack-of-fit sum of squares, is one of the components of a partition of the sum of squares of residuals in an analysis of variance, used in the numerator in an F-test of the null hypothesis that says that a proposed model fits well. The other component is the pure-error sum of squares.
The pure-error sum of squares is the sum of squared deviations of each value of the dependent variable from the average value over all observations sharing its independent variable value(s). These are errors that could never be avoided by any predictive equation that assigned a predicted value for the dependent variable as a function of the value(s) of the independent variable(s). The remainder of the residual sum of squares is attributed to lack of fit of the model since it would be mathematically possible to eliminate these errors entirely.
In order for the lack-of-fit sum of squares to differ from the sum of squares of residuals, there must be more than one value of the response variable for at least one of the values of the set of predictor variables. For example, consider fitting a line
by the method of least squares. One takes as estimates of α and β the values that minimize the sum of squares of residuals, i.e., the sum of squares of the differences between the observed y-value and the fitted y-value. To have a lack-of-fit sum of squares that differs from the residual sum of squares, one must observe more than one y-value for each of one or more of the x-values. One then partitions the "sum of squares due to error", i.e., the sum of squares of residuals, into two components:
sum of squares due to error = (sum of squares due to "pure" error) + (sum of squares due to lack of fit).
The sum of squares due to "pure" error is the sum of squares of the differences between each observed y-value and the average of all y-values corresponding to the same x-value.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In statistics, a sum of squares due to lack of fit, or more tersely a lack-of-fit sum of squares, is one of the components of a partition of the sum of squares of residuals in an analysis of variance, used in the numerator in an F-test of the null hypothesis that says that a proposed model fits well. The other component is the pure-error sum of squares. The pure-error sum of squares is the sum of squared deviations of each value of the dependent variable from the average value over all observations sharing its independent variable value(s).
The partition of sums of squares is a concept that permeates much of inferential statistics and descriptive statistics. More properly, it is the partitioning of sums of squared deviations or errors. Mathematically, the sum of squared deviations is an unscaled, or unadjusted measure of dispersion (also called variability). When scaled for the number of degrees of freedom, it estimates the variance, or spread of the observations about their mean value.
In statistics, the explained sum of squares (ESS), alternatively known as the model sum of squares or sum of squares due to regression (SSR – not to be confused with the residual sum of squares (RSS) or sum of squares of errors), is a quantity used in describing how well a model, often a regression model, represents the data being modelled.
In the academic or industrial world, to optimize a system, it is necessary to establish strategies for the experimental approach. The DOE allows you to choose the best set of measurement points to min
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple