Le lissage exponentiel est une méthode empirique de lissage et de prévision de données chronologiques affectées d'aléas. Comme dans la méthode des moyennes mobiles, chaque donnée est lissée successivement en partant de la valeur initiale. Le lissage exponentiel donne aux observations passées un poids décroissant exponentiellement avec leur ancienneté. Le lissage exponentiel est une des méthodes de fenêtrage utilisées en traitement du signal. Elle agit comme un filtre passe-bas en supprimant les fréquences élevées du signal initial. La série de données brutes est notée , commençant à . Le résultat du lissage exponentiel est noté ; celui-ci peut être vu comme une estimation de , débarrassé des aléas (en traitement du signal, on dit du bruit) en fonction du passé. Le résultat dépend cependant de la pratique de l'utilisateur (choix du facteur de lissage). Le lissage exponentiel n'a vraiment d'intérêt que pour des données à peu près stationnaires (c'est-à-dire qui ne sont pas affectées de fortes croissances ou décroissances ou de variations saisonnières). Lorsqu'il existe une tendance, on doit compliquer la méthode (lissage exponentiel double). Elle n'apporte aucune aide pour le traitement des données saisonnalisées. De caractère empirique, la méthode ne fournit pas d'indications sur les propriétés statistiques des résultats. Pour une série commençant à , le résultat du lissage exponentiel simple est donné par les formules suivantes : pour : où est le facteur de lissage, avec Le fenêtrage exponentiel ou lissage exponentiel simple est attribué à Poisson qui aurait généralisé des méthodes utilisées dès le ; cette méthode fut adoptée par les spécialistes de traitement du signal dans les années 1940. L'expression la plus élémentaire du lissage exponentiel simple est donnée par l'expression : La méthode est applicable quand on dispose de deux valeurs brutes ou plus. Le paramètre α est un facteur de lissage compris entre 0 et 1. En d'autres termes, st peut être vu comme une moyenne pondérée entre la valeur actuelle yt et la valeur lissée précédente st – 1.
Ekaterina Krymova, Nicola Parolini, Andrea Kraus, David Kraus, Daniel Lopez, Markus Scholz, Tao Sun