Résumé
In multilinear algebra, a tensor decomposition is any scheme for expressing a "data tensor" (M-way array) as a sequence of elementary operations acting on other, often simpler tensors. Many tensor decompositions generalize some matrix decompositions. Tensors are generalizations of matrices to higher dimensions (or rather to higher orders, i.e. the higher number of dimensions) and can consequently be treated as multidimensional fields. The main tensor decompositions are: Tensor rank decomposition; Higher-order singular value decomposition; Tucker decomposition; matrix product states, and operators or tensor trains; Online Tensor Decompositions hierarchical Tucker decomposition; block term decomposition This section introduces basic notations and operations that are widely used in the field. A multi-way graph with K perspectives is a collection of K matrices with dimensions I × J (where I, J are the number of nodes). This collection of matrices is naturally represented as a tensor X of size I × J × K. In order to avoid overloading the term “dimension”, we call an I × J × K tensor a three “mode” tensor, where “modes” are the numbers of indices used to index the tensor.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.