Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
L' est la propriété d'une quantité physique d'être inchangée par transformation de Lorentz. Il s'agit de quantités physiques qui, lorsqu'elles sont exprimées de manière tensorielle, sont des scalaires ou pseudoscalaires. L' est une des trois hypothèses composant le principe d'équivalence d'Einstein. Dans les cadres de la relativité restreinte et donc de la relativité générale, une quantité est dite invariante de Lorentz, scalaire de Lorentz ou encore invariante relativiste, lorsqu'elle n'est pas modifiée sous l'application d'une transformation de Lorentz. Sa valeur est donc la même dans tous les référentiels galiléens. Les grandeurs suivantes sont des invariants relativistes : L'action. L'entropie. La charge électrique. La vitesse de la lumière dans le vide (c0). Le premier exemple de quantité invariante de Lorentz est la métrique de Minkowski . Si on considère une transformation de Lorentz représentée par , alors on a par définition des transformations de Lorentz si on utilise la notation matricielle, ou si on adopte la notation d'indices plus commune en physique. On a adopté pour cette dernière la convention de sommation d'Einstein qui somme implicitement selon les quatre directions tout indice apparaissant à la fois en haut et en bas d'une expression. À partir de cette quantité invariante fondamentale on peut en construire d'autres. Par exemple si on considère le quadrivecteur d'énergie-impulsion, constitué de l'énergie et de l'impulsion . Il n'est pas invariant de Lorentz car il se transforme de la façon suivante Mais par contre on peut construire la quantité quadratique suivante par contraction de ce quadrivecteur en utilisant la métrique qui définit la masse en relativité restreinte. Cette quantité est un invariant de Lorentz, car si subit une transformation de Lorentz, la quantité devient : où on a utilisé l'invariance de la métrique énoncée au début de l'article pour l'avant-dernière étape du calcul. Comme et sont des indices muets, on a bien retrouvé la norme du quadrivecteur , qui est donc une grandeur invariante.
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Arvind Shah, Rakesh Chawla, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Jessica Prisciandaro, Peter Hansen, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Kun Shi, Wei Shi, Abhisek Datta, Wei Sun, Jian Zhao, Thomas Berger, Federica Legger, Bandeep Singh, Ji Hyun Kim, Donghyun Kim, Dipanwita Dutta, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Yi Wang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Vineet Kumar, Francesco Fiori, Meng Xiao, Sourav Sen, Viktor Khristenko, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Muhammad Waqas, Hui Wang, Seungkyu Ha, Maren Tabea Meinhard, Giorgia Rauco, Ali Harb, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Gao, Chen Chen, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer