Résumé
En mathématiques, la loi des cosinus est un théorème de géométrie couramment utilisé en trigonométrie, qui relie dans un triangle la longueur d'un côté à celles des deux autres et au cosinus de l'angle formé par ces deux côtés. Cette loi s'exprime de façon analogue en géométrie plane, sphérique ou hyperbolique. Cette loi généralise le théorème de Pythagore. Les Éléments d'Euclide contenaient déjà une approche géométrique de la généralisation du théorème de Pythagore dans deux cas particuliers : ceux d'un triangle obtusangle et d'un triangle acutangle. Le développement, au Moyen Âge, de la trigonométrie arabo-musulmane permit au théorème d'évoluer dans sa forme et dans sa portée : l'astronome et mathématicien al-Battani généralisa le résultat d'Euclide à la géométrie sphérique au début du Xe siècle, et l'introduction des fonctions trigonométriques permit à Ghiyath al-Kashi, mathématicien de l'école de Samarcande, de mettre le théorème sous une forme utilisable pour la triangulation au cours du XVe siècle. La propriété a été popularisée en occident par François Viète qui l'a vraisemblablement redécouverte indépendamment. En ce qui concerne la géométrie plane, cette loi est connue sous les noms de théorème d'Al-Kashi en France, ou encore théorème de Pythagore généralisé. Le nom francisé du mathématicien perse Ghiyath Al-Kashi (1380-1429) apparut dans les années 1990 dans les manuels scolaires édités en France, les appellations théorème de Pythagore généralisé ou loi des cosinus étant utilisées jusque-là. Soit un triangle ABC, dans lequel on utilise les notations usuelles exposées sur la figure 1 : d'une part , et pour les angles et, d'autre part, a, b et c pour les longueurs des côtés respectivement opposés à ces angles. Alors la loi des cosinus, ou relation d'Al-Kashi, s'écrit, concernant l'angle en C : On obtient les relations concernant A et B par permutations. Les Éléments d'Euclide, du , contiennent déjà une approche géométrique de la généralisation du théorème de Pythagore : les propositions 12 et 13 du livre II, traitent séparément le cas d'un triangle obtusangle et celui d'un triangle acutangle.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.