Location testA location test is a statistical hypothesis test that compares the location parameter of a statistical population to a given constant, or that compares the location parameters of two statistical populations to each other. Most commonly, the location parameter (or parameters) of interest are expected values, but location tests based on medians or other measures of location are also used. The one-sample location test compares the location parameter of one sample to a given constant.
Paired difference testIn statistics, a paired difference test is a type of location test that is used when comparing two sets of paired measurements to assess whether their population means differ. A paired difference test uses additional information about the sample that is not present in an ordinary unpaired testing situation, either to increase the statistical power, or to reduce the effects of confounders.
Test des signesEn statistique, le test des signes est une alternative non-paramétrique au test T pour des échantillons appariés. La seule condition requise par ce test est que la distribution sous-jacente de la variable étudiée soit continue. Aucune condition sur la nature ou la forme de la distribution n'est requise. Le test est applicable lorsque l'on possède deux mesures de deux variables pour chaque individu et que l'on souhaite tester la significativité des différences entre les deux mesures.
Variable ordinalevignette|Exemple de représentation d’une variable ordinale : le niveau de certification par vignette Crit'Air. En statistique, une variable ordinale est une variable catégorielle dont les modalités sont totalement ordonnées, représentant chacune un niveau dans une gradation. Ces niveaux peuvent être codées par des lettres ou des chiffres sans que ceux-ci correspondent forcément à une grandeur numérique quantifiable, par exemple pour un degré de satisfaction, un grade militaire ou un numéro de version d’un logiciel.
Statistiques non paramétriquesLa statistique non paramétrique est un domaine de la statistique qui ne repose pas sur des familles de loi de probabilité paramétriques. Les méthodes non paramétriques pour la régression comprennent les histogrammes, les méthodes d'estimation par noyau, les splines et les décompositions dans des dictionnaires de filtres (par exemple décomposition en ondelettes). Bien que le nom de non paramétriques soit donné à ces méthodes, elles reposent en vérité sur l'estimation de paramètres.
Test de StudentEn statistique, un test de Student, ou test t, désigne n'importe quel test statistique paramétrique où la statistique de test calculée suit une loi de Student lorsque l’hypothèse nulle est vraie. gauche|vignette|Façade de la brasserie historique Guinness de St. James. vignette|William Sealy Gosset, qui inventa le test t, sous le pseudonyme Student. Le test de Student et la loi de probabilités qui lui correspond ont été publiés en 1908 dans la revue Biometrika par William Gosset.
Test statistiqueEn statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données. Il s'agit de statistique inférentielle : à partir de calculs réalisés sur des données observées, on émet des conclusions sur la population, en leur rattachant des risques d'être erronées. Hypothèse nulle L'hypothèse nulle notée H est celle que l'on considère vraie a priori.