Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946. The ordinal scale is distinguished from the nominal scale by having a ranking. It also differs from the interval scale and ratio scale by not having category widths that represent equal increments of the underlying attribute. A well-known example of ordinal data is the Likert scale. An example of a Likert scale is: Examples of ordinal data are often found in questionnaires: for example, the survey question "Is your general health poor, reasonable, good, or excellent?" may have those answers coded respectively as 1, 2, 3, and 4. Sometimes data on an interval scale or ratio scale are grouped onto an ordinal scale: for example, individuals whose income is known might be grouped into the income categories 19,999, 39,999, 59,999, ..., which then might be coded as 1, 2, 3, 4, .... Other examples of ordinal data include socioeconomic status, military ranks, and letter grades for coursework. Ordinal data analysis requires a different set of analyses than other qualitative variables. These methods incorporate the natural ordering of the variables in order to avoid loss of power. Computing the mean of a sample of ordinal data is discouraged; other measures of central tendency, including the median or mode, are generally more appropriate. Stevens (1946) argued that, because the assumption of equal distance between categories does not hold for ordinal data, the use of means and standard deviations for description of ordinal distributions and of inferential statistics based on means and standard deviations was not appropriate. Instead, positional measures like the median and percentiles, in addition to descriptive statistics appropriate for nominal data (number of cases, mode, contingency correlation), should be used.
Friedhelm Christoph Hummel, Philipp Johannes Koch
Vincent Kaufmann, Eloi Antoine Maël Bernier, Florian Lucien Jacques Masse, Ludy Juliana González Villamizar