CompressibilitéLa compressibilité est une caractéristique d'un corps quantifiant sa variation relative de volume sous l'effet d'une pression appliquée. La compressibilité est une grandeur intensive homogène avec l'inverse d'une pression, elle s'exprime en (Pa étant le pascal). Cette définition doit être complétée car sous l'effet d'une compression les corps ont tendance à s'échauffer. On définit donc une compressibilité isotherme, pour un corps restant à température constante, et une compressibilité isentropique (ou adiabatique), pour un corps restant à entropie constante.
Causalitévignette|Exemple classique de la chute d'un domino causé par la chute d'un autre. En science, en philosophie et dans le langage courant, la causalité désigne la relation de cause à effet. la cause, corrélat de l'effet, c'est . C'est ce qui produit l'effet ; la causalité est le . Autrement dit, la causalité est l'influence par laquelle un événement, un processus, un état ou un objet (une cause) contribue à la production d'un autre événement, processus, état ou objet (un effet) considéré comme sa conséquence.
Référentiel en rotationUn référentiel en rotation est un cas particulier de référentiel non inertiel qui est en rotation par rapport à un référentiel inertiel. Un exemple courant d'un système de référence en rotation est la surface de la Terre. Ce référentiel permet de mesurer la vitesse et le sens de rotation en mesurant les forces fictives. Par exemple, Léon Foucault a pu démontrer la force de Coriolis résultant de la rotation de la Terre avec le pendule de Foucault. Cette animation montre le système de référence en rotation.
Opérateur d'évolutionEn mécanique quantique, l'opérateur d'évolution est l'opérateur qui transforme l'état quantique au temps en l'état quantique au temps résultant de l'évolution du système sous l'effet de l'opérateur hamiltonien. On considère un hamiltonien composé de deux termes : où la dépendance temporelle est contenue dans . Quand , le système est complètement connu par ses kets propres et ses valeurs propres : Cet opérateur est noté et on a la relation, qui donne l'état du système au temps à partir du temps initial : où représente le ket au temps représente le ket au temps Pour le bra, on a alors la relation suivante : L'opérateur a les propriétés suivantes : C'est un opérateur linéaire est un opérateur unitaire ().
ParameterA parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when identifying the system, or when evaluating its performance, status, condition, etc. Parameter has more specific meanings within various disciplines, including mathematics, computer programming, engineering, statistics, logic, linguistics, and electronic musical composition.
Euler's laws of motionIn classical mechanics, Euler's laws of motion are equations of motion which extend Newton's laws of motion for point particle to rigid body motion. They were formulated by Leonhard Euler about 50 years after Isaac Newton formulated his laws. Euler's first law states that the rate of change of linear momentum p of a rigid body is equal to the resultant of all the external forces Fext acting on the body: Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect.
Principe variationnelUn principe variationnel est un principe physique s'exprimant sous une forme variationnelle et duquel, dans un domaine précis de la physique (mécanique, optique géométrique, électromagnétisme, etc), de nombreuses propriétés peuvent être déduites. Dans de nombreux cas, la résolution des équations se ramène à la recherche de géodésiques dans un espace approprié (en général l'espace des états du système physique étudié), sachant que ces géodésiques sont les extrémales d'une certaine intégrale représentant la longueur de l'arc joignant les points fixes dans cet espace abstrait.
Kepler problemIn classical mechanics, the Kepler problem is a special case of the two-body problem, in which the two bodies interact by a central force F that varies in strength as the inverse square of the distance r between them. The force may be either attractive or repulsive. The problem is to find the position or speed of the two bodies over time given their masses, positions, and velocities. Using classical mechanics, the solution can be expressed as a Kepler orbit using six orbital elements.
Hamilton's principleIn physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system.
Physique expérimentalevignette|La physique expérimentale peut parfois recourir à des instruments de très grandes dimensions : ici, construction du détecteur CMS (Compact Muon Solenoid) du Grand collisionneur de hadrons (LHC) au CERN, en 2003. Les techniciens présents en bas de l'image donnent une idée des dimensions réelles de cet ensemble (15 m de diamètre, 21 m de long, pour un poids de 14 000 tonnes) installé 100 mètres sous la surface du sol.