In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system. Although formulated originally for classical mechanics, Hamilton's principle also applies to classical fields such as the electromagnetic and gravitational fields, and plays an important role in quantum mechanics, quantum field theory and criticality theories.
Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q1, q2, ..., qN) between two specified states q1 = q(t1) and q2 = q(t2) at two specified times t1 and t2 is a stationary point (a point where the variation is zero) of the action functional
where is the Lagrangian function for the system. In other words, any first-order perturbation of the true evolution results in (at most) second-order changes in . The action is a functional, i.e., something that takes as its input a function and returns a single number, a scalar. In terms of functional analysis, Hamilton's principle states that the true evolution of a physical system is a solution of the functional equation
That is, the system takes a path in configuration space for which the action is stationary, with fixed boundary conditions at the beginning and the end of the path.
See also more rigorous derivation Euler–Lagrange equation
Requiring that the true trajectory q(t) be a stationary point of the action functional is equivalent to a set of differential equations for q(t) (the Euler–Lagrange equations), which may be derived as follows.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
Un principe variationnel est un principe physique s'exprimant sous une forme variationnelle et duquel, dans un domaine précis de la physique (mécanique, optique géométrique, électromagnétisme, etc), de nombreuses propriétés peuvent être déduites. Dans de nombreux cas, la résolution des équations se ramène à la recherche de géodésiques dans un espace approprié (en général l'espace des états du système physique étudié), sachant que ces géodésiques sont les extrémales d'une certaine intégrale représentant la longueur de l'arc joignant les points fixes dans cet espace abstrait.
In classical mechanics, Maupertuis's principle (named after Pierre Louis Maupertuis) states that the path followed by a physical system is the one of least length (with a suitable interpretation of path and length). It is a special case of the more generally stated principle of least action. Using the calculus of variations, it results in an integral equation formulation of the equations of motion for the system. Maupertuis's principle states that the true path of a system described by generalized coordinates between two specified states and is a stationary point (i.
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
Explore les transformations canoniques dans le formalisme hamiltonien, en mettant l'accent sur la préservation du principe d'action et de la structure nécessaire aux transformations.
. We study very weak solutions to scalar Euler-Lagrange equations associated with quadratic convex functionals. We investigate whether W1,1 solutions are necessarily W 1,2 Nash and Schauder applicable. We answer this question positively for a suitable clas ...
Amer Mathematical Soc2024
,
We show that the variational energy principle of the multi-region relaxed magnetohydrodynamic (MRxMHD) model can be used to predict finite-pressure linear tearing instabilities. In this model, the plasma volume is sliced into sub-volumes separated by 'idea ...
In this paper, we consider a compact connected manifold (X, g) of negative curvature, and a family of semi-classical Lagrangian states f(h)(x) = a(x)e(i phi(x)/h) on X. For a wide family of phases phi, we show that f(h), when evolved by the semi-classical ...