Extension linéaireDans la branche des mathématiques de la théorie des ordres, une extension linéaire d'un ordre partiel est un ordre total (ou ordre linéaire) qui est compatible avec l'ordre partiel. Un exemple classique est l'ordre lexicographique des ensembles totalement ordonnés qui est une extension linéaire de leur ordre produit. Étant donnés des ordres partiels quelconques ≤ et ≤* sur un ensemble X, ≤* est une extension linéaire de ≤ si et seulement si (1) ≤* est un ordre total et (2) pour tout x et y dans X, si , alors .
Ordre lexicographiqueEn mathématiques, un ordre lexicographique est un ordre que l'on définit sur les suites finies d'éléments d'un ensemble ordonné (ou, de façon équivalente, les mots construits sur un ensemble ordonné). Sa définition est une généralisation de l'ordre du dictionnaire : l'ensemble ordonné est l'alphabet, les mots sont bien des suites finies de lettres de l'alphabet. La principale propriété de l'ordre lexicographique est de conserver la totalité de l'ordre initial.
Diagramme de HasseEn mathématiques, le diagramme de Hasse, du nom du mathématicien allemand Helmut Hasse, est une représentation visuelle d'un ordre fini. Similaire à la représentation habituelle d’un graphe sur papier, il en facilite la compréhension. Dans un diagramme de Hasse : Les éléments ordonnés sont représentés par des points. La relation entre deux éléments est représentée par un segment entre deux points. Si un élément x est ≤ à un autre élément y, alors le point représentant x est placé plus bas que celui pour y.
Graded posetIn mathematics, in the branch of combinatorics, a graded poset is a partially-ordered set (poset) P equipped with a rank function ρ from P to the set N of all natural numbers. ρ must satisfy the following two properties: The rank function is compatible with the ordering, meaning that for all x and y in the order, if x < y then ρ(x) < ρ(y), and The rank is consistent with the covering relation of the ordering, meaning that for all x and y, if y covers x then ρ(y) = ρ(x) + 1.
PréordreEn mathématiques, un préordre est une relation binaire réflexive et transitive. C'est-à-dire que si E est un ensemble, une relation binaire sur E est un préordre lorsque : (réflexivité) ; (transitivité). Un ensemble préordonné est un ensemble muni d'un préordre, ou plus formellement un couple où désigne un ensemble et un préordre sur . Les ordres sont les préordres antisymétriques. Les relations d'équivalence sont les préordres symétriques. Dans un anneau commutatif, la relation « divise » est une relation de préordre.
Treillis (ensemble ordonné)En mathématiques, un treillis () est une des structures algébriques utilisées en algèbre générale. C'est un ensemble partiellement ordonné dans lequel chaque paire d'éléments admet une borne supérieure et une borne inférieure. Un treillis peut être vu comme le treillis de Galois d'une relation binaire. Il existe en réalité deux définitions équivalentes du treillis, une concernant la relation d'ordre citée précédemment, l'autre algébrique. Tout ensemble muni d'une relation d'ordre total est un treillis.
Fonction monotoneEn mathématiques, une fonction monotone est une fonction entre ensembles ordonnés qui préserve ou renverse l'ordre. Dans le premier cas, on parle de fonction croissante et dans l'autre de fonction décroissante. Ce concept est tout d'abord apparu en analyse réelle pour les fonctions numériques et a été généralisé ensuite dans le cadre plus abstrait de la théorie des ordres. Intuitivement (voir les figures ci-contre), la représentation graphique d'une fonction monotone sur un intervalle est une courbe qui « monte » constamment ou « descend » constamment.
Ensemble partiellement ordonnéEn mathématiques, un ensemble partiellement ordonné (parfois appelé poset d'après l'anglais partially ordered set) formalise et généralise la notion intuitive d'ordre ou d'arrangement entre les éléments d'un ensemble. Un ensemble partiellement ordonné est un ensemble muni d'une relation d'ordre qui indique que pour certains couples d'éléments, l'un est plus petit que l'autre. Tous les éléments ne sont pas forcément comparables, contrairement au cas d'un ensemble muni d'un ordre total.
Order theoryOrder theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.
Élément maximalDans un ensemble ordonné, un élément maximal est un élément tel qu'il n'existe aucun autre élément de cet ensemble qui lui soit supérieur, c'est-à-dire que a est dit élément maximal d'un ensemble ordonné (E, ≤) si a est un élément de E tel que : De même, a est un élément minimal de E si : Pour tout élément a de E, on a les équivalences et l'implication (stricte) : a est un majorant de E ⇔ a est la borne supérieure de E ⇔ a est l'élément maximum (ou « plus grand élément ») de E ⇒ a est l'unique élément maxima