Résumé
En mathématiques, un préordre est une relation binaire réflexive et transitive. C'est-à-dire que si E est un ensemble, une relation binaire sur E est un préordre lorsque : (réflexivité) ; (transitivité). Un ensemble préordonné est un ensemble muni d'un préordre, ou plus formellement un couple où désigne un ensemble et un préordre sur . Les ordres sont les préordres antisymétriques. Les relations d'équivalence sont les préordres symétriques. Dans un anneau commutatif, la relation « divise » est une relation de préordre. En général, ce n'est pas une relation d'ordre car elle n'est pas antisymétrique (par exemple dans l'ensemble des entiers relatifs, 1 divise –1 et –1 divise 1 alors que 1 et –1 sont différents). Sur les sommets d'un graphe orienté, la relation « être accessible depuis » est un préordre (c'est en fait la fermeture réflexive et transitive du graphe). Si le graphe est sans cycle, cette relation devient un ordre. Entre normes sur un même espace vectoriel réel, la relation « est plus fine que » est un préordre. Entre fonctions réelles d'une variable réelle, la domination est un préordre. Sur l'ensemble des disques du plan, la relation « a une aire au plus égale à celle de » est un préordre. Ce n'est pas une relation d'ordre car elle n'est pas antisymétrique (deux disques différents peuvent avoir même aire). Cette même relation, sur l'ensemble des disques fermés (ou celui des disques ouverts) de centre fixé, est une relation d'ordre. Si (E, R) et (F, S) sont deux ensembles préordonnés, une application f de E dans F est dite croissante si xRy ⇒ f(x)Sf(y). Si E est un ensemble, (F, S) un ensemble préordonné et f une application de E dans F, la relation R définie par xRy ⇔ f(x)Sf(y) est un préordre sur E (cf. dernier exemple ci-dessus, où f, qui à tout cercle associe son aire, est à valeurs dans un ensemble ordonné : les réels — ou les réels positifs).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
HUM-228: Musical studies B
Ce cursus particulier - dont l'admission est sujette à l'acceptation d'un dossier de candidature - offre à l'étudiant engagé dans des études en musique de haut niveau en parallèle à ses études EPFL la
HUM-415: Musical studies II
Ce cursus particulier - dont l'admission est sujette à l'acceptation d'un dossier de candidature - offre à l'étudiant engagé dans des études en musique de haut niveau en parallèle à ses études EPFL la
Afficher plus
Publications associées (9)
Concepts associés (29)
Order theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.
Homogeneous relation
In mathematics, a homogeneous relation (also called endorelation) on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations.
Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a ) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the , whose objects are sets and whose arrows are functions. is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent.
Afficher plus