En mathématiques, un monoïde est une structure algébrique utilisée en algèbre générale, définie comme un ensemble muni d'une loi de composition interne associative et d'un élément neutre. Autrement dit, c'est un magma associatif et unifère, c'est-à-dire un demi-groupe unifère. Il arrive parfois qu'une structure composée d'un ensemble et d'une unique opération soit relativement pauvre en éléments inversibles, par exemple un anneau où l'on considère uniquement la multiplication. Une telle structure est appelée monoïde. L'apparente pauvreté de l'opération donne naissance à une théorie spécifique, comme les relations de Green pour les monoïdes ou les idéaux dans les anneaux même non commutatifs. Une autre technique, lorsque l'on est en présence d'une opération simplifiable, consiste à « enrichir » le monoïde pour en faire un groupe. Parfois au contraire, la structure de monoïde est parfaitement adéquate. Tel est le cas pour l'algèbre des polynômes en plusieurs indéterminées : on la construit comme l'algèbre d'un monoïde particulier, engendré par un ensemble d'indices. Un monoïde est un magma unifère associatif. Formellement, (, ✻, ) est un monoïde lorsque, pour tous éléments , et de : (loi interne) ; (associativité) ; (e est neutre). Un monoïde E est dit simplifiable à gauche, ou encore régulier à gauche, (respectivement à droite) si (respectivement ) Un monoïde est dit commutatif si ses éléments sont permutables, c'est-à-dire si : Soit un monoïde. Notons sa loi de composition sous forme multiplicative, c'est-à-dire que nous écrirons pour désigner le composé noté plus haut. L'élément neutre est alors désigné par 1. On peut définir par récurrence sur le produit d'un n-uplet d'éléments de par : le produit du 0-uplet est égal à ; En étendant cette définition au composé (« produit » dans notre notation) d'une séquence d'éléments de — c'est-à-dire d'une famille indexée par un ensemble fini totalement ordonné —, on démontre : un théorème d'associativité selon lequel, dans un monoïde, un produit , évalué par cette définition ou en plaçant les parenthèses de n'importe quelle autre façon, donnera le même résultat (par exemple : ).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
CS-320: Computer language processing
We teach the fundamental aspects of analyzing and interpreting computer languages, including the techniques to build compilers. You will build a working compiler from an elegant functional language in
Concepts associés (32)
Idempotence
En mathématiques et en informatique, l'idempotence signifie qu'une opération a le même effet qu'on l'applique une ou plusieurs fois. Par exemple, la valeur absolue est idempotente : , les deux membres étant égaux à 5. On retrouve ce concept en algèbre générale, en particulier dans la théorie des opérateurs de projection et des opérateurs de clôture, mais aussi en informatique, en particulier en programmation fonctionnelle. Un élément x d'un magma (M, •) est dit idempotent si : x • x = x.
Étoile de Kleene
L'étoile de Kleene, parfois appelée fermeture de Kleene ou encore fermeture itérative, est, en théorie des langages, un opérateur unaire utilisé pour décrire les langages formels. Le nom étoile vient de la notation employée, un astérisque, et Kleene de Stephen Cole Kleene qui l'a introduite. L'étoile de Kleene est l'un des trois opérateurs de base utilisés pour définir une expression rationnelle, avec la concaténation et l'union ensembliste.
Anneau (mathématiques)
vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.