In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. Formally, a ring is an abelian group whose operation is called addition, with a second binary operation called multiplication that is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors use the term "" with a missing "i" to refer to the more general structure that omits this last requirement; see .) Whether a ring is commutative (that is, whether the order in which two elements are multiplied might change the result) has profound implications on its behavior. Commutative algebra, the theory of commutative rings, is a major branch of ring theory. Its development has been greatly influenced by problems and ideas of algebraic number theory and algebraic geometry. The simplest commutative rings are those that admit division by non-zero elements; such rings are called fields. Examples of commutative rings include the set of integers with their standard addition and multiplication, the set of polynomials with their addition and multiplication, the coordinate ring of an affine algebraic variety, and the ring of integers of a number field. Examples of noncommutative rings include the ring of n × n real square matrices with n ≥ 2, group rings in representation theory, operator algebras in functional analysis, rings of differential operators, and cohomology rings in topology. The conceptualization of rings spanned the 1870s to the 1920s, with key contributions by Dedekind, Hilbert, Fraenkel, and Noether.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (31)
MATH-311: Algebra IV - rings and modules
Ring and module theory with a major emphasis on commutative algebra and a minor emphasis on homological algebra.
MATH-215: Algebra III - rings and fields
C'est un cours introductoire dans la théorie d'anneau et de corps.
MATH-110(a): Advanced linear algebra I - vector spaces
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire (pour les futurs mathématiciens) et de démontrer rigoureusement les résultats principaux de ce sujet.
Afficher plus
Séances de cours associées (129)
Théorie des dimensions des anneaux
Explore la théorie des dimensions des anneaux, en se concentrant sur les chaînes d'idéaux et les idéaux premiers.
Théorie de Galois: La Correspondance de Galois
Explore la correspondance galois et la solvabilité par les radicaux dans les équations polynomiales.
Courbes algébriques : Normalisation
Couvre le processus de normalisation des courbes algébriques planes, en se concentrant sur les polynômes irréductibles et les courbes affines.
Afficher plus
Publications associées (120)

Exploring SIDH-Based Signature Parameters

Tako Boris Fouotsa, Laurane Chloé Angélina Marco, Andrea Basso

Isogeny-based cryptography is an instance of post-quantum cryptography whose fundamental problem consists of finding an isogeny between two (isogenous) elliptic curves E and E′. This problem is closely related to that of computing the endomorphism ring of ...
Springer2024

Dense Packings via Lifts of Codes to Division Rings

Nihar Prakash Gargava, Vlad Serban

obtain algorithmically effective versions of the dense lattice sphere packings constructed from orders in Q-division rings by the first author. The lattices in question are lifts of suitable codes from prime characteristic to orders O in Q-division rings a ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

The multivariate Serre conjecture ring

Luc Guyot

It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
San Diego2023
Afficher plus
Concepts associés (81)
Corps commutatif
vignette|Corps commutatif (pour n premier) En mathématiques, un corps commutatif (parfois simplement appelé corps, voir plus bas, ou parfois appelé champ) est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni de deux opérations binaires rendant possibles les additions, soustractions, multiplications et divisions. Plus précisément, un corps commutatif est un anneau commutatif dans lequel l'ensemble des éléments non nuls est un groupe commutatif pour la multiplication.
Théorème de factorisation
En mathématiques, le théorème de factorisation est un principe général qui permet de construire un morphisme d'une structure quotient dans un autre espace à partir d'un morphisme de vers , de façon à factoriser ce dernier par la surjection canonique de passage au quotient. Soit un ensemble muni d'une relation d'équivalence et la surjection canonique. L'unicité de g est immédiate et guide la preuve de son existence, dont voici plusieurs variantes : Preuve « naïve » : pour tout élément , on pose .
Corps fini
En mathématiques et plus précisément en algèbre, un corps fini est un corps commutatif qui est par ailleurs fini. À isomorphisme près, un corps fini est entièrement déterminé par son cardinal, qui est toujours une puissance d'un nombre premier, ce nombre premier étant sa caractéristique. Pour tout nombre premier p et tout entier non nul n, il existe un corps de cardinal pn, qui se présente comme l'unique extension de degré n du corps premier Z/pZ.
Afficher plus
MOOCs associés (9)
Mécanique de Newton
Ce cours de Physique générale – mécanique fourni les outils permettant de maîtriser la mécanique newtonienne du point matériel.
Mécanique du Point Matériel
Ce cours de Physique générale – mécanique fourni les outils permettant de maîtriser la mécanique newtonienne du point matériel.
Mécanique du Solide Indéformable
Ce cours de Physique générale – mécanique fourni les outils permettant de maîtriser la mécanique newtonienne du point matériel.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.