Concept

Introductio in analysin infinitorum

Introductio in analysin infinitorum (Latin: Introduction to the Analysis of the Infinite) is a two-volume work by Leonhard Euler which lays the foundations of mathematical analysis. Written in Latin and published in 1748, the Introductio contains 18 chapters in the first part and 22 chapters in the second. It has Eneström numbers E101 and E102. Carl Boyer's lectures at the 1950 International Congress of Mathematicians compared the influence of Euler's Introductio to that of Euclid's Elements, calling the Elements the foremost textbook of ancient times, and the Introductio "the foremost textbook of modern times". Boyer also wrote: The analysis of Euler comes close to the modern orthodox discipline, the study of functions by means of infinite processes, especially through infinite series. It is doubtful that any other essentially didactic work includes as large a portion of original material that survives in the college courses today...Can be read with comparative ease by the modern student...The prototype of modern textbooks. The first translation into English was that by John D. Blanton, published in 1988. The second, by Ian Bruce, is available online. A list of the editions of Introductio has been assembled by V. Frederick Rickey. Chapter 1 is on the concepts of variables and functions. Chapter 4 introduces infinite series through rational functions. According to Henk Bos, The Introduction is meant as a survey of concepts and methods in analysis and analytic geometry preliminary to the study of the differential and integral calculus. [Euler] made of this survey a masterly exercise in introducing as much as possible of analysis without using differentiation or integration. In particular, he introduced the elementary transcendental functions, the logarithm, the exponential function, the trigonometric functions and their inverses without recourse to integral calculus — which was no mean feat, as the logarithm was traditionally linked to the quadrature of the hyperbola and the trigonometric functions to the arc-length of the circle.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.