Concepts associés (56)
Axiome du choix
vignette|upright=1.5|Pour tout ensemble d'ensembles non vides (les jarres), il existe une fonction qui associe à chacun de ces ensembles (ces jarres) un élément contenu dans cet ensemble (cette jarre). En mathématiques, l'axiome du choix, abrégé en « AC », est un axiome de la théorie des ensembles qui Il a été formulé pour la première fois par Ernest Zermelo en 1904 pour la démonstration du théorème de Zermelo. L'axiome du choix peut être accepté ou rejeté, selon la théorie axiomatique des ensembles choisie.
Euclidean distance
In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore occasionally being called the Pythagorean distance. These names come from the ancient Greek mathematicians Euclid and Pythagoras, although Euclid did not represent distances as numbers, and the connection from the Pythagorean theorem to distance calculation was not made until the 18th century.
Application identité
En mathématiques, l'application identité ou la fonction identité est l'application qui n'a aucun effet lorsqu'elle est appliquée à un élément : elle renvoie l'argument sur lui-même. Formellement, sur un ensemble , c'est l'application : Le graphe de l'application identité de est appelé la diagonale du produit cartésien . Pour l'ensemble des réels, ce graphe est la première bissectrice du plan euclidien. vignette|Graphe de la fonction identité sur . L'application identité de est notée ou .
Espace de Banach
En mathématiques, plus particulièrement en analyse fonctionnelle, on appelle espace de Banach un espace vectoriel normé sur un sous-corps K de C (en général, K = R ou C), complet pour la distance issue de sa norme. Comme la topologie induite par sa distance est compatible avec sa structure d’espace vectoriel, c’est un espace vectoriel topologique. Les espaces de Banach possèdent de nombreuses propriétés qui font d'eux un outil essentiel pour l'analyse fonctionnelle. Ils doivent leur nom au mathématicien polonais Stefan Banach.
Partie bornée
En mathématiques, la notion de partie bornée (ou, par raccourci, de borné) étend celle d'intervalle borné de réels à d'autres structures, notamment en topologie et en théorie des ordres. Selon les cas, la définition privilégie l'existence de bornes ponctuelles ou la négation de l'éloignement à l'infini. Une fonction bornée est une fonction dont l' est bornée dans l'ensemble d'arrivée. Un opérateur borné est un opérateur linéaire dont les images de bornés sont bornées également.
Voisinage (mathématiques)
En mathématiques, dans un espace topologique, un voisinage d'un point est une partie de l'espace qui contient un ouvert qui comprend ce point. C'est une notion centrale dans la description d'un espace topologique. Par opposition aux voisinages, les ensembles ouverts permettent de définir élégamment des propriétés globales comme la continuité en tout point. En revanche, pour les propriétés locales comme la continuité en un point donné ou la limite, la notion de voisinage (et le formalisme correspondant) est plus adaptée.
Espace pseudo-métrique
En mathématiques, un espace pseudo-métrique est un ensemble muni d'une pseudo-distance. C'est une généralisation de la notion d'espace métrique. Sur un espace vectoriel, tout comme une norme induit une distance, une semi-norme induit une semi-distance. Pour cette raison, en analyse fonctionnelle et dans les disciplines mathématiques apparentées, l'expression « espace semi-métrique » est utilisée comme synonyme d'espace pseudo-métrique (alors qu'« espace semi-métrique » a un autre sens en topologie).
Uniform norm
In mathematical analysis, the uniform norm (or ) assigns to real- or complex-valued bounded functions f defined on a set S the non-negative number This norm is also called the , the , the , or, when the supremum is in fact the maximum, the . The name "uniform norm" derives from the fact that a sequence of functions \left{f_n\right} converges to f under the metric derived from the uniform norm if and only if f_n converges to f uniformly.
Euclidean topology
In mathematics, and especially general topology, the Euclidean topology is the natural topology induced on -dimensional Euclidean space by the Euclidean metric. The Euclidean norm on is the non-negative function defined by Like all norms, it induces a canonical metric defined by The metric induced by the Euclidean norm is called the Euclidean metric or the Euclidean distance and the distance between points and is In any metric space, the open balls form a base for a topology on that space.
Quasi-isometry
In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces. The concept of quasi-isometry is especially important in geometric group theory, following the work of Gromov.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.