Axiom of choiceIn mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by arbitrarily choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets, there exists an indexed set such that for every .
Euclidean distanceIn mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore occasionally being called the Pythagorean distance. These names come from the ancient Greek mathematicians Euclid and Pythagoras, although Euclid did not represent distances as numbers, and the connection from the Pythagorean theorem to distance calculation was not made until the 18th century.
Identity functionIn mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unchanged. That is, when f is the identity function, the equality f(X) = X is true for all values of X to which f can be applied. Formally, if M is a set, the identity function f on M is defined to be a function with M as its domain and codomain, satisfying In other words, the function value f(X) in the codomain M is always the same as the input element X in the domain M.
Banach spaceIn mathematics, more specifically in functional analysis, a Banach space (pronounced ˈbanax) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly.
Bounded setIn mathematical analysis and related areas of mathematics, a set is called bounded if it is, in a certain sense, of finite measure. Conversely, a set which is not bounded is called unbounded. The word "bounded" makes no sense in a general topological space without a corresponding metric. Boundary is a distinct concept: for example, a circle in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary. A bounded set is not necessarily a closed set and vice versa.
Neighbourhood (mathematics)In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior. Intuitively speaking, a neighbourhood of a point is a set of points containing that point where one can move some amount in any direction away from that point without leaving the set.
Pseudometric spaceIn mathematics, a pseudometric space is a generalization of a metric space in which the distance between two distinct points can be zero. Pseudometric spaces were introduced by Đuro Kurepa in 1934. In the same way as every normed space is a metric space, every seminormed space is a pseudometric space. Because of this analogy the term semimetric space (which has a different meaning in topology) is sometimes used as a synonym, especially in functional analysis. When a topology is generated using a family of pseudometrics, the space is called a gauge space.
Uniform normIn mathematical analysis, the uniform norm (or ) assigns to real- or complex-valued bounded functions f defined on a set S the non-negative number This norm is also called the , the , the , or, when the supremum is in fact the maximum, the . The name "uniform norm" derives from the fact that a sequence of functions \left{f_n\right} converges to f under the metric derived from the uniform norm if and only if f_n converges to f uniformly.
Euclidean topologyIn mathematics, and especially general topology, the Euclidean topology is the natural topology induced on -dimensional Euclidean space by the Euclidean metric. The Euclidean norm on is the non-negative function defined by Like all norms, it induces a canonical metric defined by The metric induced by the Euclidean norm is called the Euclidean metric or the Euclidean distance and the distance between points and is In any metric space, the open balls form a base for a topology on that space.
Quasi-isometryIn mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces. The concept of quasi-isometry is especially important in geometric group theory, following the work of Gromov.