Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Explore la convergence de la descente du gradient pour les fonctions fortement convexes et l'importance de la régularisation dans la prévention des surajustements.
Explore les fondamentaux de l'apprentissage profond, y compris la classification de l'image, les principes de travail du réseau neuronal et les défis de l'apprentissage automatique.
Introduit les bases de l'apprentissage automatique, couvrant la classification supervisée, les limites de décision et l'ajustement de la courbe polynomiale.
Couvre la régression quantile, en se concentrant sur l'optimisation linéaire pour prédire les résultats et discuter de la sensibilité aux valeurs aberrantes, de la formulation des problèmes et de la mise en œuvre pratique.