Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la classification linéaire, l'extraction des caractéristiques, les fonctions de perte, la validation croisée et les échelles spatiales dans le traitement des signaux et l'analyse de l'IRMf.
Explore la régression logistique pour la classification binaire, couvrant la modélisation des probabilités, les méthodes d'optimisation et les techniques de régularisation.
Explore le surajustement, la validation croisée et la régularisation dans l'apprentissage automatique, en mettant l'accent sur la complexité du modèle et l'importance de la force de régularisation.
Explore l'augmentation des données en tant que méthode de régularisation clé dans l'apprentissage en profondeur, couvrant des techniques telles que les traductions, les rotations et le transfert de style artistique.
Couvre le processus de formation d'un réseau neuronal, y compris l'avancement, la fonction de coût, la vérification des gradients et la visualisation des couches cachées.