Bruits colorésBien que le bruit soit un signal aléatoire, il possède des propriétés statiques caractéristiques. La densité spectrale de puissance en est une, et peut être utilisée pour distinguer les différents types de bruit. Cette classification par la densité spectrale donne une terminologie de « couleurs ». Chaque type est défini par une couleur. Ces définitions sont, en principe, communes aux différentes disciplines pour lesquelles le bruit est un facteur important (comme l'acoustique, la musique, l'électrotechnique et la physique).
Phase (onde)En physique, la d'une fonction périodique est l'argument de cette fonction, noté souvent . Elle est définie modulo la période, c'est-à-dire à un nombre entier de périodes près. Par exemple, la hauteur d'un pendule oscillant est une fonction sinusoïdale de la forme . La phase vérifie alors à près, avec la pulsation et la phase initiale. La phase est une grandeur sans dimension. Cependant, dans le cas d'un signal sinusoïdal, on attribue l'unité radian ou degré à la phase.
Parseval's theoremIn mathematics, Parseval's theorem usually refers to the result that the Fourier transform is unitary; loosely, that the sum (or integral) of the square of a function is equal to the sum (or integral) of the square of its transform. It originates from a 1799 theorem about series by Marc-Antoine Parseval, which was later applied to the Fourier series. It is also known as Rayleigh's energy theorem, or Rayleigh's identity, after John William Strutt, Lord Rayleigh.
Matched filterIn signal processing, a matched filter is obtained by correlating a known delayed signal, or template, with an unknown signal to detect the presence of the template in the unknown signal. This is equivalent to convolving the unknown signal with a conjugated time-reversed version of the template. The matched filter is the optimal linear filter for maximizing the signal-to-noise ratio (SNR) in the presence of additive stochastic noise.
Maximum entropy spectral estimationMaximum entropy spectral estimation is a method of spectral density estimation. The goal is to improve the spectral quality based on the principle of maximum entropy. The method is based on choosing the spectrum which corresponds to the most random or the most unpredictable time series whose autocorrelation function agrees with the known values. This assumption, which corresponds to the concept of maximum entropy as used in both statistical mechanics and information theory, is maximally non-committal with regard to the unknown values of the autocorrelation function of the time series.
Méthode de BartlettEn estimation spectrale, la méthode de Bartlett fournit un estimateur consistant de la densité spectrale de puissance. En pratique, obtenir un signal sur une durée infinie et l'acquérir sans bruit est impossible. C'est pourquoi on peut utiliser la fenêtre de Bartlett dans le but de lisser un périodogramme. Cette méthode est utilisée en physique, en ingénierie ainsi qu'en mathématiques appliquées. Les applications courantes de cette méthode sont l'analyse en réponse fréquentielle ainsi que l'analyse spectrale générale.
Fréquence spatialeLa fréquence spatiale est une grandeur caractéristique d'une structure qui se reproduit identiquement à des positions régulièrement espacées. Elle est la mesure du nombre de répétitions par unité de longueur ou par unité d'angle. Le concept de fréquence spatiale trouve ses applications principales en optique, particulièrement en photographie, en vidéo et en astronomie. Elle permet de caractériser la finesse des détails d'une mire ou d'une image formée sur un capteur : elle s'exprime fréquemment en cycle par millimètre (cy/mm).
SpectromètreUn spectromètre est un appareil de mesure permettant de décomposer une quantité observée — un faisceau lumineux en spectroscopie, ou bien un mélange de molécules par exemple en spectrométrie de masse — en ses éléments simples qui constituent son spectre. En optique, il s'agit d'obtenir les longueurs d'onde spécifiques constituant le faisceau lumineux (spectre électromagnétique) tandis que, pour un mélange chimique, il s'agira d'obtenir les masses spécifiques de chacune des molécules (spectre de masse).
Whittle likelihoodIn statistics, Whittle likelihood is an approximation to the likelihood function of a stationary Gaussian time series. It is named after the mathematician and statistician Peter Whittle, who introduced it in his PhD thesis in 1951. It is commonly used in time series analysis and signal processing for parameter estimation and signal detection. In a stationary Gaussian time series model, the likelihood function is (as usual in Gaussian models) a function of the associated mean and covariance parameters.
Méthode de WelchEn estimation spectrale, la méthode de Welch fournit un estimateur consistant de la densité spectrale de puissance. Cette méthode a été proposée par Peter D. Welch en 1967. Le biais de l'estimation est diminué en moyennant temporellement. Elle est à comparer à la méthode de Bartlett où on utilise les propriétés d'ergodicité du signal avec des moyennes statistiques. La méthode de Welch, comme la méthode de Bartlett, utilise une estimation du spectre du périodogramme ; dans les deux cas, on réduit le bruit aux dépens de la résolution en fréquence.